设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系( ).

admin2019-12-26  13

问题 设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系(  ).

选项 A、不存在.
B、仅含有一个非零解向量.
C、含有两个线性无关的解向量.
D、含有三个线性无关的解向量.

答案B

解析 由A*≠D以及
        
知r(A)=n或n-1.又ξ1,ξ2,ξ3,ξ4是Ax=b的互不相等的解,即解不唯一,从而r(A)=n-1.因此的基础解系仅含有一个解向量,故选(B).
转载请注明原文地址:https://jikaoti.com/ti/9niRFFFM
0

最新回复(0)