设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).

admin2017-08-31  22

问题 设f(x)在[a,b]上连续,且f’’(x)>0,对任意的x1,x2∈[a,b]及0<λ<1,证明:f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).

选项

答案令x0=λx1+(1一λ)x2,则x0∈[a,b],由泰勒公式得 f(x)=f(x0)+f(x0)(x—x0)+[*](x-x0)2,其中ξ介于x0与x之间, 因为f’’(x)>0,所以f(x)≥f(x0)+f(x0)(x—x0), 于是[*] 两式相加,得f[λx1+(1一λ)x2]≤λf(x1)+(1一λ)f(x2).

解析
转载请注明原文地址:https://jikaoti.com/ti/8BVRFFFM
0

最新回复(0)