首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵. 利用(1)的结果判断矩阵B—CTA—1C是否为正定矩阵,并证明你的结论.
admin
2018-08-03
44
问题
设D=
为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.
利用(1)的结果判断矩阵B—C
T
A
—1
C是否为正定矩阵,并证明你的结论.
选项
答案
矩阵B—C
T
A
—1
C是正定矩阵.证明:由(1)的结果知D合同于矩阵M=[*],又D为正定矩阵,所以M为正定矩阵.因M为对称矩阵,故B一C
T
A
—1
C为对称矩阵.由M正定,知对m维零向量x=(0,0,…,0)
T
及任意的n维非零向量y=(y
1
,y
2
,…,y
n
)
T
,有[x
T
,y
T
]M[*]=y
T
(B—C
T
A
—1
C)y>0 故对称矩阵B—C
T
A
—1
C为正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/822RFFFM
0
考研数学一
相关试题推荐
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设f(x)二阶连续可导,f(0)=0,f’(0)=1,且[xy(x+y)一f(x)y]dx+[f’(x)+xy2]dy=0为全微分方程,求f(x)及该全微分方程的通解.
二阶常系数非齐次线性微分方程y"一2y’一3y=(2x+1)e-x的特解形式为().
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A=相似于对角阵.求:(1)a及可逆阵P,使得P-1AP=为对角阵;(2)A100.
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
设α1,α2,…,αt为n个n维向量,证明:α1,α2,…,αt线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αt线性表示.
求幂级数的和函数.
设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的()条件.
随机试题
铜锌钎焊的力学性能和熔点与铜的含量有关。
以下关于颞下颌关节紊乱病的叙述,哪项是错误的()
一患者突然发生进行性意识障碍。瞳孔最初有短暂缩小,以后逐渐散大,对光反射消失,伴上睑下垂及眼球外斜。肌张力增加,病理征阳性。考虑患者出现了()。
接受国的以下行为中,没有违反使馆馆舍不得侵犯原则的是()。
下列哪种行为构成交通肇事罪?()
《建设工程设计合同(示范文本)》规定,施工图设计文件应当满足( )的需要。
压榨设备在专业设备中属于()。
王锋与刘青结婚四年后,已生一子王达。2001年7月5日,王锋出海打渔遇台风未归,生死不明。若干年后,其妻刘青向法院申请宣告王锋死亡,法院依法作出宣告死亡判决。经查,王锋结婚后与父母分开生活其父于2003年10月3日死亡。王锋因与刘青感情不和且离婚未果而与刘
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。 2.作答参考时限:阅读资料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、资料1.某记者因为
Theworldisnotonlyhungry,itisalsothirstyforwater.Thismayseemstrangetoyou,sincenearly75%oftheearth’ssurfa
最新回复
(
0
)