设f(x)在[1,2]上连续,在(1,2)内可导,且f′(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得

admin2019-09-27  30

问题 设f(x)在[1,2]上连续,在(1,2)内可导,且f′(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得

选项

答案令F(x)=lnx,F′(x)=[*]≠0,由柯西中值定理,存在ξ∈(1,2),使得 [*] 由拉格朗日中值定理得ln2-lnl=[*],其中η∈(1,2), f(2)-f(1)=f′(ξ)(2-1)=f′(ξ),其中ξ∈(1,2), 故[*]

解析
转载请注明原文地址:https://jikaoti.com/ti/7rCRFFFM
0

随机试题
最新回复(0)