设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).

admin2017-09-15  59

问题 设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).

选项

答案令φ(χ)=f(b)lnχ-f(χ)lnχ+f(χ)lna,φ(a)=φ(b)=f(b)lna. 由罗尔定理,存在ξ∈(a,b),使得φ′(ξ)=0. 而φ′(χ)=[*]-f′(χ)lnχ+f′(χ)lna, 所以[*][f(b)-f(ξ)]-f′(ξ)(lnξ-lna)=0,即[*]ξf′ξ.

解析
转载请注明原文地址:https://jikaoti.com/ti/6YzRFFFM
0

随机试题
最新回复(0)