首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A= (1)证明:A可对角化; (2)求Am.
设A= (1)证明:A可对角化; (2)求Am.
admin
2019-08-23
39
问题
设A=
(1)证明:A可对角化;
(2)求A
m
.
选项
答案
(1)由|λE—A|=(λ-1)
2
(λ+2)=0得λ
1
=λ
2
=1,λ
3
=-2. 当λ=1时,由(E-A)X=0得λ=1对应的线性无关的特征向量为 [*] 当λ=-2时,由(-2E-A)X=0得λ=-2对应的线性无关的特征向量为ξ
3
=[*], 因为A有三个线性无关的特征向量,所以A可以对角化. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/6FERFFFM
0
考研数学二
相关试题推荐
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记μn=f(n),n=1,2,…,又μ1<μ2,证明μn=+∞。
设αi=(ai1,ai2,…,ain)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量,试判断向量组α1,…,αr,β的线性相关性.
设f(x)有界,且f’(x)连续,对任意的x∈(-∞,+∞)有|f(x)+f’(x)|≤1.证明:|f(x)|≤1.
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
假设λ为n阶可逆矩阵A的一个特征值,证明:为A-1的特征值;
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0.证明:对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设A是3阶矩阵,λ1=1,λ2=2,λ3=3是A的特征值,对应的特征向量分别是又β=[1,2,3]T,计算:Anβ.
随机试题
肝性脑病患者禁用肥皂水灌肠的主要原因是
下列哪一项不属于疖的特点
甲公司是著名风险投资公司,乙公司是日益发展壮大的网上商城。乙方为增加产品线、建设新的物流基地希望获得甲公司的融资,双方就此进行了谈判,请回答下列问题:
以下各项中的请求权可以不通过破产程序清偿的是:()
根据《国务院关于进一步加强安全生产工作的决定》,我国重大危险源的监控分为______。
影响大气环境的因素,下列较全面的是()。①气象因素;②地理因素;③污染物的性质;④城市人口数量;⑤城市工业
L企业是一家煤矿企业,年底该企业想要对煤石的存量进行清查,这种情况下适用于实地盘点法。( )
以下关于期权特点的说法不正确的是( )。
利率和收入的组合点出现出在JS曲线右上方,LM曲线的左上方的区域中则表示()。
为了防止信息被别人窃取,可以设置开机密码,下列密码设置最安全的是()。
最新回复
(
0
)