首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
已知A=,A*是A的伴随矩阵,求A*的特征值与特征向量.
admin
2018-06-15
29
问题
已知A=
,A
*
是A的伴随矩阵,求A
*
的特征值与特征向量.
选项
答案
因为 [*] =B-E,而r(B)=1,则有|λE-B|=λ
3
-6λ
2
.所以矩阵B的特征值是6,0,0. 故矩阵A的特征值是5,-1,-1.又行列式|A|=5,因此A
*
的特征值是1,-5,-5. 矩阵B属于λ=6的特征向量是α
1
=(1,1,1)
T
,属于λ=0的特征向量是α
2
=(-1,1,0)
T
和α
3
=(-1,0,1)
T
.因此A
*
属于λ=1的特征向量是k
1
α
1
(k
1
≠0),属于λ=-5的特征向量是k
2
α
2
+k
3
α
3
(k
2
,k
3
不全为0).
解析
转载请注明原文地址:https://jikaoti.com/ti/4i2RFFFM
0
考研数学一
相关试题推荐
设L为曲线x2+y2=R2(常数R>0)一周,n为L的外法线方向向量,u(x,y)具有二阶连续偏导数且
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r.证明:(Ⅰ)与(Ⅲ)等价.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设向量组α1,α4,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1讨论向量组β1,β2,…,βs的线性相关性.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|
设向量组α1=[a11,a21,…,an]T,α2=[a11,a22,…,an2]T,…,αs=[a1s,a2s,…,a1ts]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
已知问λ取何值时β不能由α1,α2,α3线性表出.
已知α1=[1,2,-3,1]T,α2=[5,-5,a,11]T,α3=[1,-3,6,3]T,α4=[2,-1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性相关;
设L:y=sinx(0≤x≤).由x=0,L及y=sint围成面积S1(t);由y=sint、L及x=.(1)t取何值时,S(t)=S1(t)+S2(t)取最小值?(2)t取何值时,S(t)=S1(t)+S2(t)取最大值?
设α1=.(1)a,b为何值时,B不能表示为α1,α2,α3,α4的线性组合?(2)a,b为何值时,B可唯一表示为α1,α2,α3,α4的线性组合?
随机试题
水泥混凝土路面施工,混凝土运输拌合物从出料到浇筑完毕的允许最长时间,根据()确定。
根据企业所得税法的规定,下列表述正确的有()。
连锁经营最基本、最明显、最本质的特征()。
我国政府机构与立法机构的关系是()。
商业银行从事黄金期货经纪业务,可以利用自有的黄金期货交易资格代理客户从事黄金期货经纪业务。()
农村士地承包经营纠纷解决的途径有:双方当事人协商解决,请求村民委员会、乡(镇)人民政府等调解解决,向农村土地承包仲裁机构申请仲裁,向人民法院起诉等。()
“举一反三”是负迁移。
一间坐满了观众的剧院突然发生大火,争于逃生的观众都渴望从有限的紧急出口中尽快逃出去,但当所有人挤成一团时,必然会因为相互拥挤和彼此践踏而影响逃生速度。在这种紧急情境下,最佳的解决方案是大家同时采取合作策略,按照一定规则有序通过紧急出口。这段文字所强调的主要
萎靡不振对于()相当于()对于食物
Stocksfinishedmixedinpost-holidaytradingyesterdayasWallStreetmeanderedthroughashortenedsession.(46)Themajorinde
最新回复
(
0
)