首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
]f(x)在(一∞,+∞)内二阶可导,f"(x)<0.=1,则f(x)在(一∞,0)内( )
]f(x)在(一∞,+∞)内二阶可导,f"(x)<0.=1,则f(x)在(一∞,0)内( )
admin
2019-05-12
25
问题
]f(x)在(一∞,+∞)内二阶可导,f"(x)<0.
=1,则f(x)在(一∞,0)内( )
选项
A、单调增加且大于零。
B、单调增加且小于零。
C、单调减少且大于零。
D、单调减少且小于零。
答案
B
解析
由
=1,得f(0)=0,f’(0)=1,因为f"(0)<0,所以f’(x)单调减少,在(一∞,0)内f’(x)>f’(0)=1>0,故f(x)在(一∞,0)内为单调增函数,又f(0)=0,故在(一∞,0)内f(x)<(0)=0,选B。
转载请注明原文地址:https://jikaoti.com/ti/3woRFFFM
0
考研数学一
相关试题推荐
设f(x)=讨论函数f(x)在x=0处的可导性.
设f(x,y,z)=x2一y2+2z2,则div(gradf)=_________.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
设函数f(x)=πx+x2(-π<x<π)的傅里叶级数为(ancosnx+bnsinnx),则b3=________.
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
设α为n维非零列向量,A=E-.证明:α为矩阵A的特征向量.
向量组α1,α2,…,αs线性无关的充要条件是().
设f(x)在[0,1]上连续且满足,f(0)=1,f’(x)一f(x)=a(x一1).y=f(x),x=0,x=1,y=0围成的平面区域绕x轴旋转一周所得的旋转体体积最小,求f(x).
设f(x)在x=0处连续,求极限f(x2+y2+z2)dν,其中Ω:.
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
随机试题
Irememberhe’swrittenabook______I’vecompletelyforgotten.()
患者,女,46岁。入院时诊断:高血压病合并2型糖尿病。责任护士为其提供膳食指南,指导她逐步采纳科学合理的饮食计划。护士实施的是
功能泻火通便,清上泄下,主治上、中二焦火热炽盛证的方剂是()。
混凝土小型空心砌块砌体工程中,龄期不足()天及表面有浮水的小砌块不得施工。
通过测评一个人的成就需要,来分派工作和职位,体现的激励理论是()。
企业所发生的捐赠支出应计入“()”科目。
股票分割的目的在于()。
下面不属于结构化程序设计风格的是
Theyareteachersanddon’trealize_____tostartandrunacompany.
Ahappymarriageapparentlyisgoodmedicine,buthostilespousesmay【B1】______oneanother’shealthCouplesinconflict-ridden
最新回复
(
0
)