设f(x)在[0,1]上连续可导,且f(0)=0,证明:∫01f2(x)dx≤1/2∫01f’2(x)dx.

admin2022-10-25  37

问题 设f(x)在[0,1]上连续可导,且f(0)=0,证明:∫01f2(x)dx≤1/2∫01f’2(x)dx.

选项

答案显然f(x)=f(x)-f(0)=∫0xf’(t)dt,则f2(x)=[∫0xf’(t)dt]2=[∫0x1·f’(t)dt]2≤∫0x12dt·∫0xf’2(t)dtx∫0xf’2(t)dt≤x∫01f’2(t)dt=x∫01f’2(x)dx,故∫01f2(x)dx≤∫01xdx·∫01f’2(x)dx=1/2∫01f’2(x)dx.

解析
转载请注明原文地址:https://jikaoti.com/ti/3kGRFFFM
0

最新回复(0)