首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(I):α1,α2,α3 ;(Ⅱ):α1,α2,α3 ,α4;(Ⅲ):α1,α2,α3 ,α5如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α1,α2,α3,α5—α4的秩为4.
已知向量组(I):α1,α2,α3 ;(Ⅱ):α1,α2,α3 ,α4;(Ⅲ):α1,α2,α3 ,α5如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α1,α2,α3,α5—α4的秩为4.
admin
2019-05-10
34
问题
已知向量组(I):α
1
,α
2
,α
3
;(Ⅱ):α
1
,α
2
,α
3
,α
4
;(Ⅲ):α
1
,α
2
,α
3
,α
5
如果各向量组的秩分别为秩(I)=秩(Ⅱ)=3,秩(Ⅲ)=4,证明向量组α
1
,α
2
,α
3
,α
5
—α
4
的秩为4.
选项
答案
可用初等列变换证明,还可利用两向量组等价必等秩的结论证之. 转化为矩阵证明.设A=[α
1
,α
2
,α
3
,α
5
],B=[α
1
,α
2
,α
3
,α
5
一α
4
],注意到α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关.由命题2.3.1.1知,α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
,则 B=[α
1
,α
2
,α
3
,α
5
一α
4
]=[α
1
,α
2
,α
3
,α
5
一λ
1
α
1
—λ
2
α
2
一λ
3
α
3
] [*][α
1
,α
2
,α
3
,α
5
]=A. 因而矩阵B与A等价,故秩(B)=秩(A)=4,即α
1
,α
2
,α
3
,α
5
一α
4
线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/3WLRFFFM
0
考研数学二
相关试题推荐
设f(χ)在[0,+∞)内可导且f(0)=1,f′(χ)<f(χ)(χ>0).证明:f(χ)<eχ(χ>0).
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设函数f(χ)在区间[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.证明:存在ξ∈(0,3),使得f′(ξ)=0.
已知0是A=的特征值,求a和A的其他特征值及线性无关的特征向量.
设A=,若齐次方程组AX=0的任一非零解均可用α线性表示,则a=().
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设A为n×m矩阵,B为m×n矩阵(m>n),且AB=E证明:B的列向量组线性无关.
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
随机试题
回避制度到清朝已发展得十分完善,分为()
患者,女,42岁。右上尖牙咬物疼痛1周,伴右侧眶下区肿痛3日。查体见右眶下肿胀明显,右上尖牙龋坏,髓腔暴露、叩痛(+++),前庭沟肿胀,并有波动感。如行切开引流,应选择
可用于无菌操作室空气环境灭菌的是
A.Ⅰ期临床试验B.Ⅱ期临床试验C.Ⅲ期临床试验D.Ⅳ期临床试验E.生物等效性试验
府硬化病人不宜大量放腹水,因可导致(2006年真题)
李某在离婚后,带着幼女李甲生活,后李某娶陈某,陈某本有一个儿子陈乙,甲乙成年以后,自愿提出结婚,则:()
进口报关单上的申报日期通常是指海关接受进口货物的收、发货人或受其委托的报关企业申请的日期。()
参加数学竞赛的学生中女生人数比男生多28人,考试后男生全部达到优良,女生则有1/4没有达到优良。已知男、女生取得优良成绩的共42人,参加比赛人数占全年级的20%,全年级有学生多少人?()
正强化,又叫积极强化,是采用鼓励的方法来肯定某种行为,使个体感到有利,从而愿意保持自己的积极行为。根据上述定义,下列属于正强化的是:
(1)在名称为Forml的窗体上绘制一个名称为Conmmandl、标题为“输出”的命令按钮以及一个名为Textl的文本框,编写适当的事件过程。程序运行后,如果单击“输出”按钮,则在文本框中显示“模拟考试”,如图70—1所示。程序中不能使用任何变量,直接显示
最新回复
(
0
)