设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…). 证明:[*]fn(x)绝对收敛.

admin2019-11-25  47

问题 设函数f0(x)在(-∞,+∞)内连续,fn(x)=fn-1(t)dt(n=1,2,…).
证明:[*]fn(x)绝对收敛.

选项

答案对任意的x∈(-∞,+∞),f0(t)在[0,x]或[x,0]上连续,于是存在M>0(M与x有关),使得|f0(t)|≤M(t∈[0,x]或t∈[x,0]),于是 |fn(x)|≤[*](x-t)n-1dt|=[*]|x|n, 因为[*]=0,所以[*]|x|n收敛,根据比较审敛法知[*]fn(x)绝对收敛.

解析
转载请注明原文地址:https://jikaoti.com/ti/35iRFFFM
0

随机试题
最新回复(0)