首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶非奇异矩阵A的各行元素之和为2,则A-1+A2必有一个特征值为( ).
若n阶非奇异矩阵A的各行元素之和为2,则A-1+A2必有一个特征值为( ).
admin
2019-07-10
39
问题
若n阶非奇异矩阵A的各行元素之和为2,则A
-1
+A
2
必有一个特征值为( ).
选项
A、
8
B、2
C、
D、
答案
A
解析
由于非奇异矩阵各行元素之和为2,所以A(1,1,…,1)
T
=2(1,I,…,1)
T
,λ=2是A的特征值.由于A可逆,λ
1
是A
-1
的特征值,且2
2
是A
2
的特征值,故A
-1
+A
2
有一特征值为1/2+2
2
=9/2.
转载请注明原文地址:https://jikaoti.com/ti/znnRFFFM
0
考研数学三
相关试题推荐
设X,Y为随机变量,若E(XY)=E(X)E(Y),则().
令f(t)=et,由微分中值定理,[*]所以[*]
设则x=0是f(x)的().
设随机变量X的数学期望和方差分别为E(X)=μ,D(X)=σ2,用切比雪夫不等式估计P{|X—μ|
设A,B为n阶矩阵.若A有特征值1,2,…,n,证明:AB~BA.
设A,B为n阶矩阵.是否有AB~BA;
设A为三阶矩阵,A的特征值为λ1=1,λ2=2,λ3=3,其对应的线性无关的特征向量分别向量求Anβ.
讨论函数的连续性.
(1)设α1,α3,β1,β2均为3维列向量,且α1,α3线性无关,β1,β2线性无关,证明存在非零向量ξ,使得ξ既可由α1,α3线性表示,又可由β1,β2线性表示;(2)当时,求所有的既可由α1,α2线性表示,又可由β1,β2线性表示的向量ξ.
随机试题
Asustainabletransportationsystemisonethatissafe,capableandfriendlytotheenvironment.Sustainabletransportationis
对于癫痫持续状态的患者,护士首先应做何种准备
产前诊断主要检测的内容包括()
在我国,国债利率主要以()为基准。(2010年单选题)
助理人员正着重检查w公司是否有故意漏记应付账款的行为,其采用的程序和获取的证据有效的有( )。助理人员在对固定资产减值准备审计时,处理正确的有( )。
对于塞林格的______,人们或归因于其“人禅”,或认为是装模作样、故弄玄虚、“______”的表现。也有人说,是人们对年少轻狂的考尔菲德的误读,在某种程度上导致了塞林格的内疚。他坚持拒绝改编、拒绝出版续集,是为了避免再次误读以及对原作的扭曲。填入划
试述马克思主义法学关于法的本质的学说。
下列关于隋朝法制的表述,错误的是()。
Generally,snakeswon’tattackhumans______theyarethreatenedwithdanger.
CulturalDifferencesinBusinessWhenyouconductbusinessoverseasorplayhosttointernationalvisitors,culturaldiffere
最新回复
(
0
)