首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证: (1)若x0∈(a,b),则对于(a,b)内的任何x,有 f(x0)≥f(x)一f(x0)(x—x0), 当且仅当x=x0时等号成立; (2)若x1,x2,…,xn
admin
2020-03-16
33
问题
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:
(1)若x
0
∈(a,b),则对于(a,b)内的任何x,有
f(x
0
)≥f(x)一f(x
0
)(x—x
0
),
当且仅当x=x
0
时等号成立;
(2)若x
1
,x
2
,…,x
n
∈(a,b),且x
i
<x
i+1
(i=1,2,…,n一1),则
,
其中常数k
i
>0(i=1,2,…,n)且∑
k
i
=1.
选项
答案
(1)将f(x)在x
0
点泰勒展开,即 f(x)=f(x
0
)+f’(x
0
)(x一x
0
)+[*](x一x
0
)
2
,ξ在x
0
与x之间. 由已知f"(x)<0,x∈(a,b)得 [*](x一x
0
)
2
≤0(当且仅当x=x
0
时等号成立) 于是f(x)≤f(x
0
)+f’(x
0
)(x一x
0
),即 f(x
0
)≥f(x)一f’(x
0
)(x—x
0
)(当且仅当x=x
0
时等号成立). (2)因为x
1
=[*]∈(a,b). 取x
0
=[*],对x
i
(i=1,2,…,n)利用(1)的结果有 f(x
0
)≥f(x
i
)一f(x
0
)(x
i
一x
0
),i=1,2,…,n, 当且仅当x
i
=x
0
时等号成立. 而x
0
≠x
1
且x
0
≠x
n
,将上面各式分别乘以k
i
(i=1,2,…,n)后再求和,有 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/yrARFFFM
0
考研数学二
相关试题推荐
求∫xsin2xdx.
已知函数f(μ)具有二阶导数,且f’(0)=1,函数y=y(x)由方程y一xey-1=1所确定。设z=f(lny—sinx),求。
(1)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设α1,α2,…,αs是一组两两正交的非零向量,证明它们线性无关.
一条曲线经过点(2,0),且在切点与y轴之间的切线长为2,求该曲线.
设z=其中f,g均可微,求
求曲线y=与χ轴围成的区域绕χ轴、y轴形成的几何体体积.
[2000年]设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且秩(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,c表示任意常数,则线性方程组AX=b的通解X=().
设函数f(x)在闭区间[0,1]上可微.对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)内有且仅有一个x,使得f(x)=x.
随机试题
核左移
患者,女性,74岁。以“间断性腹胀1个月”之主诉入院,患者1个月前无明显诱因出现腹胀,既往有乙肝病史14年。诊断:肝硬化失代偿期:腹水(大量)。医嘱:长期服用吠塞米不需定期监测的是
金融监管国际化的进程如下:1975年2月,在瑞士巴塞尔成立了银行管理和监督实施委员会,简称巴塞尔银行监管委员会。1988年7月,巴塞尔银行监管委员会公布了《关于统一国际银行资本测量和资本标准的报告》,简称“巴塞尔资本协议”。1997年9月,巴塞尔银行监管委
根据《中华人民共和国教师法》,下列属于教师义务的是()。
【2015.河北张家口】当某教师在课堂时,学生不声不响,而当该教师离校或离开课堂以后,纪律立即松懈。与这种课堂纪律有关的教师领导方式类型最可能是()。
[2013年·吉林·判断]“一切为了学生的发展”是新课改的最高宗旨和核心概念。()
伦敦奥运会前夕,曾经准确预测过奥运会大国获得奖牌总数的科学家们认为,奖牌总数与其说是一个体育问题,不如说是一个经济问题。英国在2012年伦敦奥运会上赢得的奖牌数将打破纪录,美国和中国应该会在今年继续取得成功,但俄罗斯、澳大利亚和德国今年极有可能会感到失望。
在C语言中,引用数组元素时,其数组下标的数据类型允许是()。
下列链表中,其逻辑结构属于非线性结构的是()。
Youshouldspendabout20minutesonQuestions27-40,whicharebasedonReadingPassage3below.Aneur
最新回复
(
0
)