首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 当a,b为何值时,β可由α1,α2,α3线性表示.写出表达式.
设 当a,b为何值时,β可由α1,α2,α3线性表示.写出表达式.
admin
2021-01-12
40
问题
设
当a,b为何值时,β可由α
1
,α
2
,α
3
线性表示.写出表达式.
选项
答案
当a≠一6,a+2b一4=0时, [*],β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=2α
1
一α
2
+0α
3
; 当a=一6时, [*] 当a=一6,b≠5时,由[*],β可由α
1
,α
2
,α
3
唯一线性表示,表达式为β=6α
1
+α
2
+2α
3
; 当a=一6,b=5时,由[*],β可由α
1
,α
2
,α
3
线性表示,表达式为β=(2k+2)α
1
十(k一1)α
2
+kα
3
,其中k为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/ynARFFFM
0
考研数学二
相关试题推荐
设δ>0,ff(x)在(—δ,δ)有连续的三阶导数,f’(0)=f"(0)=0且,则下列结论正确的是_________。
已知函数y=a|x|与y=x2所围成的图形的面积为9,则a=______。
已知y*(x)=xe—x+e—2x,y*(x)=xe—x+xe—2x,y*(x)=xe—x+e—2x+xe—2x是某二阶线性常系数微分方程y"+py’+qy=f(x)的三个特解.(Ⅰ)求这个方程和它的通解;(Ⅱ)设y=y(x)是该方程满足y(0)=0,
[2013年]设函数f(x)=lnx+设数列{xn}满足lnxn+<l,证明xn存在,并求此极限.
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=2/3的解。
(1995年)设y=eχ是微分方程χy′+p(χ)y=χ的一个解,求此微分方程满足条件y|χ=ln2=0。的特解.
已知β可用α1,α2,…,αs线性表示,但不可用α1,α2,…,αs-1线性表示.证明:(1)αs不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
设向量组(Ⅰ)与向量组(Ⅱ),若(Ⅰ)可由(Ⅱ)线性表示,且r(Ⅰ)=r(Ⅱ)=r,证明:(I)与(Ⅱ)等价.
由分部积分法可知[*]又因为f(1)=0,f’(x)=[*]故[*]
随机试题
热甚动风的先兆可见
曲池位于
老年人早、中、晚三餐食量的比例最好为
与工业产品一样,对建设项目进行价值工程研究时,也要考虑( )。
下列不属于发包人义务的是()。
1982年甘肃秦安大地湾遗址发现的壁画残块是中国迄今发现的最古老的壁画遗迹。()
Mr.Weeksisfiftyyearsold.He’staughtmathsinamiddleschoolfortwentyyears.Heworksandalwayscomestohisofficeon
设曲面∑:=1及平面π:2x+2y+z+5=0.求曲面∑与平面π之间的最短和最长距离.
InthegrandschemeofthingsJeremyBenthamandJohnStuartMillarenormallythoughtofasgoodguys.Betweenthem,theycame
InJapan,mostpeoplestillfeelthatawoman’splaceisinthehome;andmostwomenwillinglyaccepttheir【C1】______roleaswif
最新回复
(
0
)