首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求椭圆x2+4y2=4上一点,使其到直线2x+3y-6=0的距离最短.
求椭圆x2+4y2=4上一点,使其到直线2x+3y-6=0的距离最短.
admin
2021-02-25
23
问题
求椭圆x
2
+4y
2
=4上一点,使其到直线2x+3y-6=0的距离最短.
选项
答案
解法1:设p(x,y)为椭圆x
2
+4y
2
=4上任意一点,则p到直线2x+3y-6=0的距离为[*].求d的最小值点即求d
2
的最小值点.下面利用拉格朗日乘数法求d
2
的最小值点. 设[*],得到方程组 [*] 解上述方程组,得x
1
=8/5,y
1
=3/5;x
2
=-8/5,y
2
=-3/5. 于是 [*] 由问题的实际意义最短距离存在,因此(8/5,3/5)即为所求的极小值点. 解法2:椭圆x
2
+4y
2
=4上任意一点p(x,y)处切线的斜率为[*],平行于直线2x+3y-6=0的切线斜率应满足[*],即3x=8y.由 [*] 解得 x
1
=8/5,y
1
=3/5;x
2
=-8/5,y
2
=-3/5. 于是[*].因此(8/5,3/5)即为所求的极小值点 解法3:椭圆的参数方程为x=2cosφ,y=sinφ,将其代入p(x,y)到直线2x+3y-6=0的距离[*]中,得 [*],其中sinθ=4/5,cosθ=3/5. 当sin(φ+θ)=1时,d达到最小值,而此时x=2cosφ=2sinθ=8/5,y=sinφ=cosθ=3/5.即(8/5,3/5)即为所求的极小值点.
解析
转载请注明原文地址:https://jikaoti.com/ti/xuARFFFM
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:(1)存在c∈(a,b),使得f(c)=0;(2)存在ξi∈(a,b)(i=1,2),且ξ1≠ξ2,使得f’(ξi)+f(ξi)=
设其中函数f,g具有二阶连续偏导数,求
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)一3f(1-sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小量,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程
设λ为可逆方阵A的特征值,且χ为对应的特征向量,证明:(1)λ≠0;(2)为A-1的特征值,且χ为对应的特征向量;(3)为A*的特征值,且χ为对应的特征向量.
直线y=x将椭圆x2+3y2=6y分为两块,设小块面积为A,大块面积为B,求的值.
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设三阶方阵A与B相似,且|2E+A|=0。已知λ1=1,λ2=一1是方阵B的两个特征值,则|A+2AB|=________。
若z=f(x,y)可微,且则当x≠0时=______
设其中函数f(u)可微,则=___________.
随机试题
明适应不涉及
甲亢危象发生的诱因,不包括
正常甲状腺24h内I131摄取量应为人体总量的
工程项目管理的基本原理主要是()。
决策者在决策时要确定一套标准,要求这些标准是()的。
【2013年北京第24题】古人根据月亮变化情况来记月,称为晦、朔、弦、望,其中“望”是指()。
国家工作人员利用职务上的便利,侵吞、窃取、骗取或者以其他手段非法占有公共财产的行为,称为()。
计算及x轴和y轴围成,其中a>0,b>0.
Sincethereissuchanabundanceoffoodinthesea,itisunderstandablethatsomeoftheefficient,highlyadaptable,warm-blo
A、Toshowhowhappytheywere.B、Todriveawaytheevilspirits.C、Towarnthethievesandrobbers.D、Toselltheirdrumsandst
最新回复
(
0
)