首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量. 证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是3阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量. 证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
admin
2018-09-25
30
问题
设A是3阶实矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是三个对应的特征向量.
证明:当λ
2
λ
3
≠0时,向量组ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关.
选项
答案
因 [ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)] =[ξ
1
,λ
1
ξ
1
+λ
2
ξ
2
,λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
] =[ξ
1
,ξ
2
,ξ
3
] [*] 又λ
1
≠λ
2
≠λ
3
,故ξ
1
,ξ
2
,ξ
3
线性无关,由上式知 ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关<=> [*] =λ
2
λ
3
2
≠0,即λ
2
λ
3
≠0.
解析
转载请注明原文地址:https://jikaoti.com/ti/xu2RFFFM
0
考研数学一
相关试题推荐
设A为n阶可逆矩阵,证明:(A*)*=|A|n-2A.
已知A=,则An=___________.
设A,B,C是n阶矩阵,且ABC=E,则必有
有100道单项选择题,每个题中有4个备选答案,且其中只有一个答案是正确的.规定选择正确得1分,选择错误得0分.假设无知者对于每一个题都是从4个备选答案中随机地选答,并且没有不选的情况,计算他能够超过40分的概率.
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设α1=(1,1)T,α2=(1,0)T和β1=(2,3)T,β2=(3,1)T,求由α1,α2到β1,β2的过渡矩阵.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
证明D==(x1+x2+x3)(xi-xj).
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
随机试题
A.肾病综合征B.肝豆状核变性C.ABO血型不合D.胎儿呼吸窘迫综合征E.严重肝病血浆中低密度脂蛋白明显升高可见于
甲公司拟进行资产重组,委托资产评估机构对企业股东全部权益价值进行评估。评估基准日为2009年12月31日。评估人员经调查分析,得到以下相关信息:(1)甲公司经过审计后的有形资产账面净值为920万元,评估值为1000万元,负债为400万元。(2)企业原账
证券存管服务是______为______提供的。( )
应付账款的入账价值包括()。
在矫正社会工作领域,院舍训练中的()收容犯罪青年和少年,通过六个月以上三年以下的人院矫正训练,使之在思想上、心理上、行为上得到改善。
实数a,b,c,d均不为0,且a>b,c>d,则().
人的价值问题从根本上说就是()。
某市要建垃圾焚烧厂,由于居民反对。政府劝说无果。最终放弃建设计划。你对此如何看?
下列命令中,不能用于测试域名到IP地址转换的是()。
若要求在文本框中输入密码时文本框中只显示#号,则应在此文本框的属性窗口中设置()
最新回复
(
0
)