首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、B都是m×n矩阵,证明:r(A+B)≤r(A)+r(B).
设A、B都是m×n矩阵,证明:r(A+B)≤r(A)+r(B).
admin
2017-07-26
26
问题
设A、B都是m×n矩阵,证明:r(A+B)≤r(A)+r(B).
选项
答案
将矩阵A与B按列分块为 A=[α
1
,α
2
,…,α
n
],B=[β
1
,β
2
,…,β
n
], 并记r(A)=r
1
,r(B)=r
2
.不失一般性,设α
1
,α
2
,…,[*]是A的列向量组的一个极大线性无关组,β
1
,β
2
,…,[*]是B的列量组的一个极大线性无关组,从而α
1
,α
2
,…,α
n
可由α
1
,α
2
,…,[*]线性表示,β
1
,β
2
,…,β
n
可由β
1
,β
2
,…,[*]线性表示. 因此,α
1
+β
1
,α
2
+β
2
,…,α
n
+β
n
可由向量组α
1
,…,[*]线性表示,故 r(A+B)≤r(A)+r(B).
解析
转载请注明原文地址:https://jikaoti.com/ti/xVSRFFFM
0
考研数学三
相关试题推荐
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
A、 B、 C、 D、 D
[*]
[*]
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性相关?
求以曲线为准线,以原点O(0,0,0)为顶点的锥面方程.
设线性方程组的系数矩阵为A,三阶矩阵B≠0,且AB=0,试求λ值.
设f(x)在[a,b]上连续且单调增加,试证:
二次型f(x1,x2,x3)=x12+ax22+x32—4x1x2—8x1x3—4x2x3经过正交变换化为标准形5y12+by22一4y32,求:(1)常数a,b;(2)正交变换的矩阵Q.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
随机试题
香蕉不能在北方栽种主要是因为降水量少。[]
由一条肽链组成的蛋白质其最高级空间结构是
患者,女,30岁。贫血原因不明。试服铁剂治疗第6天复查血象,网织红细胞上升达5%,但未见血红蛋白增加,镜检见红细胞大小不等,中心淡染区扩大。其最可能的诊断是
膨胀土地区建筑物周边散水宽度应不小于()m。
双组分硅铜结构密封胶一般需要( )的养护。
在强大的习惯面前,科学有时也会变得__________________。填入划横线部分最恰当的一项是()。
33,533,5335,55335,553355,()
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a}与B={Y>a}相互独立,且P(A+B)=.求:(1)a;(2)E.
Ididn’tgetthereuntil8o’clock.Ididn’tbethere______8o’clock.
ThoughIdaBauerwasonly18yearsold,shehadcometoSigmundFreudsufferingfromcoughingandspeechlessness.She’dbecomed
最新回复
(
0
)