首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫02f(t)dt=f(2)+f(3).证明:ξ1,ξ2∈(0,3),使得f’(ξ1)=f’(ξ2)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
admin
2022-10-12
30
问题
设f(x)在[0,3]上连续,在(0,3)内二阶可导,且2f(0)=∫
0
2
f(t)dt=f(2)+f(3).证明:ξ
1
,ξ
2
∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)=0;存在ξ∈(0,3),使得f"(ξ)-2f’(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,F’(x)=f(x),∫
0
2
f(t)dt=F(2)-F(0)=F’(c)(2-0)=2f(c),其中0<c<2.因为f(x)在[2,3]上连续,所以f(x)在[2,3]上取到最小值m和最大值M,m≤[f(2)+f(3)]/2≤M,由介值定理,存在x
0
∈[2,3],使得f(x
0
)=[f(2)+f(3)]/2,即f(2)+f(3)=2f(x
0
),于是f(0)=f(c)=f(x
0
),由罗尔定理,存在ξ
1
∈(0,c)∈(0,3),ξ
2
∈(c,x
0
)∈(0,3),使得f’(ξ
1
)=f’(ξ
2
)0.令φ(x)=e
-2x
f’(x),φ(ξ
1
)=φ(ξ
2
)=0,由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)∈(0,3),使得φ’(ξ)=0,而φ’(x)=e
-2x
[f"(x)-2f’(x)]且e
-2x
≠0,故f"(ξ)-2f’(ξ)=0.
解析
转载请注明原文地址:https://jikaoti.com/ti/xTGRFFFM
0
考研数学三
相关试题推荐
假设随机变量X和Y,同分布,X的概率密度为(I)已知事件A={X>a}和B={Y>a}独立,且P(AuB)=3/4,求常数a;(Ⅱ)求1/x2的数学期望.
设总体X服从参数λ=2的指数分布,X1,X2,…,Xn是来自总体X的简单随机样本,和S2分别为样本均值和样本方差,已知,则a的值为()。
设二元函数z=xex+y+(x+1)ln(1+y),则dz|(1,0)=__________.
若函数f(x)在点x0处的左导数f﹣’(x0)和右导数f﹢’(x0)都存在,则().
设y=f(x)二阶可导,f’(x)≠0,它的函数是x=φ(y),又f(0)=1,f’(0)=,f’’(0)=-1,则=_________________________。
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组的解,(I)求λ的值;(Ⅱ)证明|B|=0.
假设f(x)在[a,+∞)上连续,f’’(x)在(a,+∞)内存在且大于零,记F(x)=,证明:F(x)在(a,+∞)内单调增加.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表出?证明你的结论.(2)α4能否由α1,α2,α3线性表出?证明你的结论.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
随机试题
简述氰化物的测定意义。
深昏迷的临床表现包括()
脂肪瘤中医称为血管瘤中医称
内伤头痛的诊断要点,下列何者是错误的
A.前记、正文、后记B.处方药品名称C.药品剂量与数量D.君、臣、佐、使顺序E.中成药书写规则中药饮片处方的书写应按
(2009年)MnO22+HCl=MnCl2+Cl2+H2O将反应配平后,MnCl2的系数为()。
一组N=20的数据,其均值是10,这组数据的每个数都加上5,得到新的均值是()。
大多数喝酒过量的人都会感到头疼,如果小王喝酒不过量,他可能不会头疼。上述推理结构与下列哪项相似?
There________nobooksIwant.
Job-relatedillnessesaregrowinginfrequency.In1985,therewere390,000casesofillnessesthatwerejobrelated,including
最新回复
(
0
)