首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
admin
2017-12-29
55
问题
非齐次线性方程组Ax=b中,系数矩阵A和增广矩阵的秩都等于4,A是4×6矩阵,则( )
选项
A、无法确定方程组是否有解
B、方程组有无穷多解
C、方程组有唯一解
D、方程组无解
答案
B
解析
由于非齐次线性方程组的系数矩阵和增广矩阵的秩相同是方程组有解的充要条件,且方程组的未知数个数是6,而系数矩阵的秩为4,因此方程组有无穷多解,故选B。
转载请注明原文地址:https://jikaoti.com/ti/xNKRFFFM
0
考研数学三
相关试题推荐
f(x)在[0,1]上连续,(0,1)内可导,且f(1)=.证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ-1)f(ξ).
证明:r(A+B)≤r(A)+r(B).
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA.证明:当λ>0时,矩阵B为正定矩阵.
设A是n×m阶矩阵,B是m×n矩阵,E是n阶单位阵,若AB=E,证明:B的列向量组线性无关.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________.
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
已知函数F(x)的导数为=0,则F(x)=________.
已知y1=xex+e2x和y2一xex+e-x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
微分方程y"+2y’+2y=e-xsinx的特解形式为()
已知3维向量组α1,α2,α3线性无关,则向量组α1一α2,α2一kα3,α3一α1也线性无关的充要条件是k________.
随机试题
诊断心绞痛最准确的方法是
成年男性正常血红蛋白浓度
男性,40岁,反复出现胸骨后烧灼样疼痛,多在餐后l小时出现,卧位时症状加重。其最可能的诊断是
A、气微,味淡B、气清香,味苦涩、微辛C、气清香,味微辛D、气微,味微酸、苦、涩E、气微弱,味微苦,稍有黏性番泻叶气味为
根据《中华人民共和国合同法》规定,下列单位中可以作为保证人的是()。
期货公司申请金融期货经纪业务资格的,应当向中国证监会提交《高级管理人员情况表》《主要部门负责人情况表》和《从业人员情况表》。()
长江公司对发出存货计价采用月末一次加权平均法,2018年1月甲存货的收发存情况为:1月1日,结存40000件,单价为5元;1月17日,售出35000件。1月28日,购入20000件,单价为8元。假设不考虑增值税等税费,长江公司2018年1月31日甲存货的账
日前,世界卫生组织一份最新报告指出,全球每年有1600万人在70岁之前死于心脏病、肺病、癌症和糖尿病等非传染性疾病,中国则超过300万人。这些人被世卫定义为“过早死亡”。报告的目的在于敦促各国查找原因并采取更多行动处理这1600万人过早死亡问题。实际上,“
下边给定的是一个纸盒,下面哪一项不能折成给定的纸盒?
______,theknowledgeeconomyhasbecomethemajorcharacteristicofthenationaleconomyofmostdevelopedcountries.
最新回复
(
0
)