首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设在点x=0处二阶导数存在,则常数a,b,c分别是
设在点x=0处二阶导数存在,则常数a,b,c分别是
admin
2019-06-04
18
问题
设
在点x=0处二阶导数存在,则常数a,b,c分别是
选项
A、a=一2,b=2,c=1.
B、a=2,b=一2,c=1.
C、a=一2,b=1,c=2.
D、a=2,b=1,c=一2.
答案
A
解析
【分析一】本题主要考查分段函数在分界点处具有高阶导数时应满足的条件.为了处理更一般的问题,我们考虑分段函数
其中f
1
(x)和f
2
(x)分别在较大的区间(x
0
—δ,+∞)和(一∞,x
0
)+δ)(δ>0是一个常数)中具有任意阶导数,则f(x)在分界点x=x
0
具有k阶导数的充分必要条件是f
1
(x)和f
2
(x)有相同的泰勒公式:f
1
(x)=f
2
(x)=a
0
+a
1
(x一x
0
)+a
2
(x一x
0
)
2
+…+a
k
(x—x
0
)
k
+a((x一x
0
)
k
).注意,在f(x)的定义中,分界点x
0
也可以属于f
1
(x)所在区间,结论是完全一样的.把上述一般结论用于本题,取x
0
=0,k=2,f
1
(x)=ax
2
+bx+c,f
2
(x)=cos2x+2sinx,因
所以a,b,c应分别是a=一2,b=2,c=1,这表明结论A正确.
【分析二】首先要求f(x)在x=0连续,即要求
即[cos
2
x+2sinx]|
x=0
=[ax
2
+bx+c]|
x=0
得c=1.这表明C,D不正确.当c=1时,f(x)可写成
其次要求f
’
(0),即f
-
’
(0)=f
+
’
(0),当c=1时即(cos2x+2sinx)
’
-|
x=n
=(ax
2
+bx+c)
’
+|
x=a
=b,即b=2.于是B不正确.因此只能是A正确.
转载请注明原文地址:https://jikaoti.com/ti/xJQRFFFM
0
考研数学一
相关试题推荐
已知向量组α1,α2,α3,α4线性无关。则向量组
设A、B均为三阶矩阵,E是三阶单位矩阵.已知AB=2A+B,B=,则(A—E)—1=_________.
设n≥2为正整数,则An一2An—1=_________.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T、是线性方程组Ax=0的两个解.求A的特征值与特征向量;
函数u=xy+yz+xz在点P(1,2,3)处沿P点向径方向的方向导数为________________.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=_______________.
函数f(x,y)=x2y3在点(2,1)沿方向l=i+j的方向导数为
两家影院竞争1000名观众,每位观众随机地选择影院且互不影响.试用中心极限定理近似计算:每家影院最少应设多少个座位才能保证“因缺少座位而使观众离去”的概率不超过1%?(Ф(2.328)=0.9900)
设X~U(0,1)且X与Y独立间分布,求ξ=的分布函数(U(0,1)表示区间(0,1)上的均匀分布)F(u).
随机试题
不违农时,谷不可胜食也。胜:
关于骨盆直肠间隙脓肿的叙述正确的是
A.我国最早的本草学专著B.系统整理了南北朝以前的药物学资料C.集我国16世纪以前药学成就之大成D.我国现存最早的完整的古本草合刊本E.我国的第一本官方本草《神农本草经》
定量预测方法包括延伸性预测法和因果分析法,其中延伸性预测法又可分为()。
职业技能包括()。
若将水稻田里的杂草全部铲除,则稻田生态系统将发生的变化是()。
下列军事武器装备按发明时间先后排序.错误的是()。
在Excel2003中,根据工作表的实际内容由系统自动插入分页符,在“分页预览”视图中不能被移动。
【B1】ThefreeenterprisesystemhasproducedatechnologycapableofprovidingtheAmericanconsumerwiththelargestandmostva
WhoisMrsSuttonworriedabout?
最新回复
(
0
)