首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=一2为A的一个特征值,其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2019-03-11
33
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=一2为A的一个特征值,其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
一α
1
C、α
1
+2α
2
+3α
3
D、2α
1
一3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)=0α
1
一2α
3
=一2α
3
,故一2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
一α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
一3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://jikaoti.com/ti/xGBRFFFM
0
考研数学三
相关试题推荐
已知α1=(a,a,a)T,α2=(一a,a,b)T,α3=(一a,一a,一b)T线性相关,则a,b满足关系式________。
设(I)函数f(x)在[0,+∞)上连续,且满足0≤f(x)≤ex一1;(Ⅱ)平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别交于点P2和P1;(Ⅲ)由曲线y=f(x)与直线MN及x轴围成的平面图形的面积S恒等于线段P1P2之
设向量组α1,α3,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
设随机变量X与Y相互独立,概率密度分别为求随机变量Z=2X+Y的概率密度FZ(z).
计算二重积分其中积分区域D是由直线x=0,x=2,y=2与曲线所围成.
设某种元件的寿命为随机变量且服从指数分布。这种元件可用两种方法制得,所得元件的平均寿命分别为100和150(小时),而成本分别为C和2C元。如果制造的元件寿命不超过200小时,则须进行加工,费用为100元。为使平均费用较低,问C取何值时,用第2种方法较好?
A,B均是n阶矩阵,且AB=A+B.证明:A-E可逆,并求(A-E)-1.
设a0=1,a1=一2,a2=an(n≥2).证明:当|x|<1时,幂级数收敛,并求其和函数S(x).
计算二重积分(x2+4x+y2)dxdy,其中D是曲线(x2+y2)2=a2(x2一y2)围成的区域.
设α1,α2,…,αr,和β1β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1β2,…,βs}线性相关甘存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1β2,…,βs线性表示.
随机试题
Askthreepeopletolookoutofthesamewindowatabusystreetcornerandtellyouwhattheysee.Chancesareyouwillreceive
轴位增强扫描通过窦汇以上层面,天幕呈
A、过度疲劳B、饥饿受寒C、大出血,月经过多D、恣食肥甘,体丰湿盛之人E、暴饮暴食血厥虚证常见诱因为
室内消火栓栓口处的出水压力大于()时,应设置减压措施。
为了满足多种要求,楼板层基本由三个层次组成,它们是结构层、面层和( )。
国际货物运输合同是()。
幼儿期儿童既能理解又能正确使用的词汇越来越多,这反映了幼儿词汇发展所具有的特点是
设z=z(x,y),由方程确定(F为可微函数),求
Ifthereisonecentral,recurringmistaketheUnitedStatesmakeswhendealingwiththerestoftheworld,itistoassumethat
在窗体上画一个列表框和一个命令按钮,其名称分别为List1和Command1,然后编写如下事件过程:PrivateSubForm_Load() List1.AddItem"Item1" List1.AddItem"It
最新回复
(
0
)