设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.

admin2020-04-30  34

问题 设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.

选项

答案因f(a)=f(b),且f(x)不恒为常数,所以至少存在一点c∈(a,b),使f(c)≠f(a)=f(b). 不妨设f(c)>f(a),则在[a,c]上由拉格朗日中值定理,至少存在一点[*],使得 [*]

解析 本题考查利用中值定理讨论函数的性质.上般可用拉格朗日中值定理讨论.
转载请注明原文地址:https://jikaoti.com/ti/x89RFFFM
0

最新回复(0)