首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
下列命题正确的是( ).
下列命题正确的是( ).
admin
2019-03-11
28
问题
下列命题正确的是( ).
选项
A、若向量α
1
,α
2
,…,α
n
线性无关,A为n阶非零矩阵,则Aα
1
,Aα
2
,…,Aα
n
线性无关
B、若向量α
1
,α
2
,…,α
n
线性相关,则α
1
,α
2
,…,α
n
中任一向量都可由其余向量线性表示
C、若向量α
1
,α
2
,…,α
n
线性无关,则α
1
α
2
,α
2
+α
3
,…,α
n
+α
1
一定线性无关
D、设α
1
,α
2
,…,α
n
是n个n维向量且线性无关,A为n阶非零矩阵,且Aα
1
,Aα
2
,…,Aα
n
线性无关,则A一定可逆
答案
D
解析
(Aα
1
,Aα
2
,…,Aα
n
)=A(α
1
,α
2
,…,α
n
),因为α
1
,α
2
,…,α
n
线性无关,所以矩阵(α
1
,α
2
,…,α
n
)可逆,于是r(Aα
1
,Aα
2
,…,Aα
n
)=r(A),而Aα
1
,Aα
2
,…,Aα
n
线性无关,所以r(A)=n,即A一定可逆,选D.
转载请注明原文地址:https://jikaoti.com/ti/wfBRFFFM
0
考研数学三
相关试题推荐
幂级数的收敛半径R=_________。
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,一1)=__________.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
就a,b的不同取值,讨论方程组
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为(1)求E(Z),D(Z);(2)求ρXZ;(3)X,Z是否相互独立?为什么?
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
为了研究施肥和不施肥对某种农作物产量的影响,独立地选了十三个小区在其他条件相同的情况下进行对比试验,得收获量如下表:设小区的农作物产量均服从正态分布且方差相等,求施肥与未施肥平均产量之差的置信度为0.95的置信区间(t0.0975(11)=2.201,
设函数f(x)具有连续的二阶导数,并满足方程f(x)=1一∫0x[f"(t)+4f(t)]dt,且f’(0)=0,求函数f(x)的表达式.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,一1]T,ξ3=[0,2,1,一1]T,添加两个方程后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
设曲线y=bx一x2与x轴所围平面图形被曲线y=ax2(a>0)分成面积相等的两部分,求a的值.
随机试题
某市W房地产开发公司(以下简称W公司)拟建一经济适用住房小区,需向本市H乡征用40公顷基本农田以外的耕地。W公司在小区建设过程中,经过市场调研,决定调整最初确定的开发方案,在部分住宅用地上建造一大型商场;委托中介服务机构代理销售经济适用住房,并向G购房户提
在进出口贸易中,根据货物种类和特点的不同,对包装方式的要求也不尽相同。对于可以自行成件的商品,如车辆、钢材、木材,在运输过程中,只需加以捆扎即可,即为散装。
某股份有限公司向国务院授权证券管理部门申请其股票上市交易,下列情形中将构成其股票不能上市交易的是()。
在会计核算的基本前提中,界定会计核算内容空间范围的是()。
告知前任注册会计师并与其沟通,不能防范下列()情形对遵循职业道德基本原则产生不利影响的主要防范措施。
【光大银行】由会计人员根据原始凭证加以整理填制的、凭以记账的凭证是()
关于弗洛伊德精神分析理论的依据,下列说法中不正确的是()。
“()”地制定劳动定额,是企业管理对劳动定额工作提出的一项基本要求。
喜马拉雅冰川是亚洲七大河流恒河、印度河、雅鲁藏布江、萨尔温江(中国境内称怒江)、湄公河、长江、黄河的源头,居住在印度次大陆和中国的数亿民众都依靠着这些河流供给水源。世界野生生物基金会全球气候变化研究小组主任珍妮弗.摩根说:“喜马拉雅冰川迅速消融将会首先引起
如图2.1所示,有四台Linux主机进行互联,则实现PC1与PC4之间互访的步骤应该是:1.首先运行(29)命令关闭计算机,在PC2与PC3上添加第二块网卡(ethl)后重新启动;2.在PC2与PC3上为第二块网卡分配IP地址,并激
最新回复
(
0
)