首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设总体X服从正态分布X~N(μ,σ2)其中σ2已知.X1,X2,…,Xn是来自总体X的简单随机样本,对总体均值μ进行检验,假设H0:μ=μ0,H1:μ≠μ0.则( ).
[2018年] 设总体X服从正态分布X~N(μ,σ2)其中σ2已知.X1,X2,…,Xn是来自总体X的简单随机样本,对总体均值μ进行检验,假设H0:μ=μ0,H1:μ≠μ0.则( ).
admin
2019-04-08
31
问题
[2018年] 设总体X服从正态分布X~N(μ,σ
2
)其中σ
2
已知.X
1
,X
2
,…,X
n
是来自总体X的简单随机样本,对总体均值μ进行检验,假设H
0
:μ=μ
0
,H
1
:μ≠μ
0
.则( ).
选项
A、若显著性水平α=0.05时拒绝H
0
,则在检验水平α=0.01时也拒绝H
0
B、若显著性水平α=0.05时接受H
0
,则在检验水平α=0.01时拒绝H
0
C、若显著性水平α=0.05时拒绝H
0
,则在检验水平α=0.01时接受H
0
D、若显著性水平α=0.05时接受H
0
,则在检验水平α=0.01时也接受H
0
答案
D
解析
如图所示,Z
α/2
表示标准正态分布的上
分位数,即图中阴影部分的面积为
.区间(一Z
α/2
,Z
α/2
)是在显著性水平α下的接受域.
若显著性水平α=0.05时接受H
0
,即表示检验统计量
的观察值落在接受域(一Z
0.025
,Z
0.025
)内.区间(一Z
0.005
,Z
0.005
)包含(一Z
0.025
,Z
0.025
),因此其观察值也落在区间(一Z
0.005
,Z
0.005
)内,即落在接受域内,所以选项D正确,B错误.
α=0.05时拒绝H
0
,即Z的观察值落在拒绝域(一∞,一Z
0.025
]∪[Z
0.025
,+∞)内;但区间(一∞,一Z
0.005
]∪[Z
0.005
,+∞)包含于(一∞,一Z
0.025
]∪[Z
0.025
,+∞),因此无法判断观察值是否落在区间(一∞,一Z
0.005
]∪[Z
0.005
,+∞)内,选项A、C无法确定.故选D.[img][/img]
转载请注明原文地址:https://jikaoti.com/ti/waoRFFFM
0
考研数学一
相关试题推荐
设总体X服从证态分布N(μ,σ2)(σ>0),从该总体中抽取简单随机样本X1,X2,…,X2n(n≥2),其样本均值为的数学期望E(Y)。
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损b元.假设一家商店在季节内该商品的销售量X千克是一随机变量,并且在区间(a,b)内均匀分布.问季初应安排多少这种商品,可以使期望销售利润最大?
如图1.3-1所示,设曲线方程为,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
设f(x)具有连续的二阶导数,且
设f(x)在[x1,x2]可导,0<x1<x2,证明:ξ∈(x1,x2)使得=f(ξ)-ξf′(ξ).
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u3-5xy+5u=1确定.求.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
设直线L:及π:x-y+2z-1=0.求直线L在平面π上的投影直线L0;
设随机变量X服从参数为2的指数分布,令U=求:(U,V)的分布;
袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:两个球中一个是红球一个是白球;
随机试题
一患者因外伤造成左胫骨长斜形骨折伴腓骨头颈部骨折,在下列各项中哪几项是恰当的
男,53岁,肝硬化腹片;积液,近1周有发热,腹胀,稍有呼吸困难,腹腔积液较前有所增长,心率96次/分,应用利尿治疗2天后出现沉默寡言,性格改变。合适的诊断是
判定和处理离群值的目的包括()。
在项目决策分析与评价阶段,对地下资源和地质结构情况尽管有所依据,但限于技术能力的局限性,对地下情况有可能认识不足,成为项目的风险源,其主要体现有()。
直流电动机常用于对()较高的生产机械的拖动。
关于黄金制品进出口管理,以下表述错误的是()。
“进口日期”栏应填报()。“标记唛码及备注”栏应填报()。
下列不属于商业银行的业务的是()。
下列不属于维新派教育实践的是()。
Employeesareoftensaidtobeacompany’sbiggestresource.Itisequallytruethattheyareitsbiggestliability.Scarcelya
最新回复
(
0
)