首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶实矩阵,AT 是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):AT AX=0,必有
设A为n阶实矩阵,AT 是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):AT AX=0,必有
admin
2019-03-14
25
问题
设A为n阶实矩阵,A
T
是A的转置矩阵,则对于线性方程组(I):AX=0和(Ⅱ):A
T
AX=0,必有
选项
A、(Ⅱ)的解是(I)的解,(I)的解也是(Ⅱ)的解.
B、(Ⅱ)的解是(I)的解,但(I)的解不是(Ⅱ)的解.
C、(I)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(I)的解.
D、(I)的解是(Ⅱ)的解,但(Ⅱ)的解不是(I)的解.
答案
A
解析
转载请注明原文地址:https://jikaoti.com/ti/wYWRFFFM
0
考研数学二
相关试题推荐
设f(χ)与g(χ)在χ=0的某邻域内连续,f(0)=g(0)≠0,求
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
设f(χ)在[a,b]连续,在(a,b)可导,f(a)=f(b),且f(χ)不恒为常数,求证:在(a,b)内存在一点ξ,使得f′(ξ)>0.
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成。求区域D的面积及D绕x轴旋转一周所得旋转体的体积。
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程=0变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
已知函数y=f(x)在任意点x处的增量△y=+α,其中α是比△x(△x→0)的高阶无穷小,且y(0)=π,则y(1)=
已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程满足条件y|x=0=0,y’|x=0=1的解为y=________.
设A为n阶实对称矩阵,下列结论不正确的是().
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.(1)写出f(x)在x=c处带拉格朗日型余项的一阶泰勒公式;(2)证明:|f’(c)|≤2a+
随机试题
凡是采用区别制的国家,遗产中不动产的继承都是适用()
简述税收行政诉讼的基本原则。
我国的根本政治制度是
A.痛觉、温度觉和粗略触压觉B.本体感觉和精细触压觉C.痛觉、温度觉和精细触压觉D.本体感觉和粗略触压觉E.痛觉、温度觉和本体感觉发生脊髓半离断时病侧出现的感觉障碍是
固冲汤主治证的病机是( )
下列不属于理气药主要归经的是
某技术方案的基准收益率为10%,内部收益率为15%,则该技术方案()。
实践中最常见的利率违规行为是()。
观察过去五年广东的发展路径,可以__________地看到当地政府、企业、民众从歧路彷徨到艰难转型的过程。要触动既得利益,要牺牲眼前利益,不仅需要勇气,更需要智慧。要__________已有的“获利”路径,要__________用惯了的政策“拐杖”,不仅需
简述教育与文化的关系。
最新回复
(
0
)