首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
admin
2021-11-25
35
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’
+
(a)f’
-
(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0存在x
1
∈(a,b),使得f(x
1
)>f(a)=0 f’
-
(b)>0存在x
2
∈(a,b),使得f(x
2
)<f(b)=0 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/wUlRFFFM
0
考研数学二
相关试题推荐
设A为n阶非奇异矩阵,a是n维列向量,b为常数,.计算PQ.
设,求a,b及可逆矩阵P,使得P-1AP=B.
设A是各行元素和均为零的三阶矩阵,α,β是线性无关的三维列向量,并满足Aα=3β,Aβ=3α。(Ⅰ)证明矩阵A能相似于对角矩阵;(Ⅱ)若α=(0,﹣1,1)T,β=(1,0,﹣1)T,求矩阵A。
已知函数f(x)=,则=()
设函数f(x)连续,且满足f(x)+∫0x(x-2-t)f(t)dt=6(x-2)ex,求f(x)。
设函数f(x)(x≥0)连续可导,且f(0)=1.又已知曲线y=f(x)、x轴、y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积值与曲线y=f(x)在[0,x]上的一段弧长值相等,求f(x).
设f(x),g(x)均有二阶连续导数且满足f(0)>0,f’(0)=0,g(0)=0,则函数u(x,y)=f(x)∫1yg(t)dt在点(0,0)处取极小值的一个充分条件是
在曲线y=(χ-1)2上的点(2,1)处作曲线的法线,由该法线、χ轴及该曲线所围成的区域为D(y>0),则区域D绕χ轴旋转一周所成的几何体的体积为().
设矩阵A,B满足A*BA=2BA一8E,其中,E为单位矩阵,A*为A的伴随矩阵,则B=_______.
设f(x)在[a,+∞)上可导,且当x>a时,fˊ(x)<k<0(k为常数).证明:如果f(a)>0,则方程f(x)=0在区间[a,a-f(a)/k]上有且仅有一个实根.
随机试题
康复医学的基本内涵不包括
全麻患者发生高血压可能的原因是()
慢性风湿性心脏瓣膜病的主要致死原因是
患者女,72岁,胃溃疡12年,听说胃溃疡可能会发生癌变后闷闷不乐,一言不发,暗自垂泪,感觉自己没有未来,担心拖累家人,目前其心理反应最可能为
以下关于目标客户需求定位法的说法中,正确的有()。
德国教育家第斯多惠说:“一个坏的老师奉送真理,一个好的老师则教人发现真理。”下列各项与之不符的是()。
以囚徒困境为基础的研究发现,双方如果合作,各自的获益最大,但合作的基础是()
老王说:“经过整改,我们工地再也没有出现过违规操作的现象。”老王的话必须预设以下哪一项?
の(小さい)(白い)(車)はだれのですか。
(1)PessimismabouttheUnitedStatesrarelypaysoffinthelongrun.Timeandagain,whenAmericanshavefeltparticularlyglum
最新回复
(
0
)