首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0. (1)求方程y’+ysinx=ψ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0. (1)求方程y’+ysinx=ψ(x)ecosx的通解; (2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
admin
2021-08-05
33
问题
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0.
(1)求方程y’+ysinx=ψ(x)e
cosx
的通解;
(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
选项
答案
(1)该方程为一阶非齐次线性微分方程,通解为 y=e
∫sinxdx
[∫ψ(x)e
cosx
e
∫sinxdx
dx+C]=e
cosx
[∫ψ(x)e
cosx
·e
—cosx
dx+C] =e
cosx
[∫ψ(x)dx+C]—e
cosx
[φ(x)+C](C为任意常数) (2)因通解中e
cosx
是以2π为周期的函数,故只需φ(x+2π)即可.因为φ’(x)=ψ(x), 所以φ(x)=∫
0
x
ψ(t)dt+C
1
.又φ(0)=0,于是φ(x)一∫
0
x
ψ(t)dt.而 φ(x+2π)=∫
0
x+2π
ψ(t)dt=∫
0
x
ψ(t)dt+∫
x
x+2π
ψ(t)dt=φ(x)+∫
0
2π
ψ(t)dt, 所以,当∫
0
2π
ψ(t)dt=0时,φ(x+2π)=φ(x),此时φ(x)以2π为周期. 因此,当∫
0
2π
ψ(t)dt=0时,方程有以2π为周期的解.
解析
转载请注明原文地址:https://jikaoti.com/ti/wBlRFFFM
0
考研数学二
相关试题推荐
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
设P=,Q为三阶非零矩阵,且PQ=O,则().
设n维行向量α=,矩阵A=E-αTα,B=E+2αTα,则AB=
由Y=sinx的图形作下列函数的图形:(1)y=sin2x(2)y=2sin2x(3)y=1—2sin2x
试在底半径为r,高为h的正圆锥内,内接一个体积最大的长方体,问这长方体的长、宽、高应各等于多少?
已知向量组α1=(1,0,2,3)T,α2=(1,1,3,5)T,α3=(1,一1,1+2,1)T,α4=(1,2,4,a+8)β=(1,1,6+3,5)T.问:(1)a,b为何值时,β不能由α1,α2,α3,α4线性表示;(2)a,b为何值时,β可由α1
设3阶矩阵A有3个特征向量η1=(1,1,1)T,η2=(1,2,4)T,η3=(1,3,9)T,它们的特征值依次为1,2,3.又设α=(1,1,3)T,求Anα.
设齐次线性方程组有通解k[1,0,2,一1]T,其中k是任意常数,A中去掉第i列(i=1,2,3,4)的矩阵记成Ai,则下列方程组中有非零解的方程组是()
设y=f(χ,y),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求.
设连续函数z=f(x,y)满足则出dz|(0.1)=__________。
随机试题
代理商的最主要特点是其无固定的营业场所。()
我们可以知道文章有一定的理,没有一定的法。所以我们只略谈原理,不像一般文法修辞书籍,在义法上多加剖析。“大匠能诲人以规矩,不能使人巧。”知道文章作法,不一定就做出好文章。艺术的基本原则是寓变化于整齐,整齐易说,变化则全靠心灵的妙运,这是所谓“神而明之,存乎
下列关于结合水和自由水的描述正确的是
依据《合同法》的有关条款,下列说法错误的是()。
《公路工程施工招标投标管理办法》指出:投标人应当具备招标文件规定的资格条件,具有承担所投标项目的相应能力。投标人应当按照招标文件的要求编制投标文件,并对招标文件提出的实质性要求和条件作出响应。招标文件中没有规定的标准和方法,不得作为评标的依据。并对投标中的
下列()选项,不会引起收入水平的上升。
下列哪些教学方法属于以探究活动为主的体育教学方法()。
从1978年党的十一届三中全会到1982年党的十二大,是邓小平理论初步形成时期。这一时期形成了()。
十八大报告指出,要千方百计增加居民收入。实现发展成果由人民共享,必须深化收入分配制度改革,努力实现居民收入增长和经济发展同步、劳动报酬增长和劳动生产率提高同步,提高居民收人在国民收入分配中的比重,提高劳动报酬在初次分配中的比重。初次分配和再分配都要兼顾效率
王韬(复旦大学2018年研;广西大学2016年研;中央民大2010年研;山东大学2008年研;兰州大学2007年研)
最新回复
(
0
)