首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
设A是n阶矩阵,α1,α2,α3,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…Aαn-1=αn,Aαn=0 求A的特征值与特征向量。
admin
2021-11-25
32
问题
设A是n阶矩阵,α
1
,α
2
,α
3
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…Aα
n-1
=α
n
,Aα
n
=0
求A的特征值与特征向量。
选项
答案
A(α
1
,α
2
,α
3
,…,α
n
)=(α
1
,α
2
,α
3
,…,α
n
)[*] 令P=(α
1
,α
2
,α
3
,…,α
n
) 则P
-1
AP=[*]=B,则A与B相似,由|λE-B|=0→λ
1
=λ
2
=...=λ
n
=0. 即A的特征值全为零,又r(A)=n-1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aa
n
=0a
n
(a
n
≠0),所以A的全部特征值为ka
n
(k≠0).
解析
转载请注明原文地址:https://jikaoti.com/ti/w7lRFFFM
0
考研数学二
相关试题推荐
设f(x)在[a,b]上存在二阶导数,f(a)=f(b)=0,并满足f″(x)+[f′(x)]2-4f(x)=0.则在区间(a,b)内f(x)()
设V(t)是曲线在x∈[0,t]的弧段绕x轴旋转一周所得的旋转体的体积,求常数c使得。
(Ⅰ)求积分f(t)=(—∞<t<+∞).(Ⅱ)证明f(t)在(—∞,+∞)连续,在t=0不可导.
设A是3阶实对称矩阵,λ1,λ2,λ3是A的3个特征值,且满足α≥λ1≥λ2≥λ3≥b,若A一μE是正定矩阵,则参数μ应满足()
设α1,α2,α3,α4是四维非零列向量组,A=(α1,α2,α3,α4),A*为A的伴随矩阵。已知方程组Ax=0的基础解系为k(1,0,2,0)T,则A*x=0的基础解系为()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
齐次线性方程组Ax=0的系数矩阵A4×5(α1,α2,α3,α4,α5)经初等行变换化为阶梯形矩阵A=(α1,α2,α3,α4,α5)→则()
设非齐次线性方程组Aχ=b有两个不同解,β1和β2其导出组的一个基础解系为α1,α2,c1,c2为任意常数,则方程组Aχ=b的通解为【】
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg·s2/m2),在垂直方向的比例系数为ky(kg·s2/m2)
随机试题
泵的切换方法是什么?
A、 B、 C、 D、 C
把理念当作世界万物的本原属于()
试述肺炎链球菌肺炎、金黄色葡萄球菌肺炎、支原体及衣原体肺炎的抗生素治疗原则。
下列各项中,不属于阳明腑实证临床表现的是
对于非收发货人或其代理人原因造成少征或漏征税款的,海关可以自缴纳税款或者货物放行之日起3年内予以追征。()
标记为L字的中国签发的签证为()
下列叛乱民族不同于其他三项的一项是()。
AdvertisingI.Thedefinitionofadvertising—(1)______butencouragingpresentationofgoodsand(1)______servicesII.The
ComeSeptember,thecampusesofAmericawillbeswarmingnotjustwithreturningundergraduates,butalsowithemployersseton
最新回复
(
0
)