首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有( )
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)ATAχ=0,必有( )
admin
2020-02-28
26
问题
设A为m×n矩阵,对于齐次线性方程组(Ⅰ)Aχ=0和(Ⅱ)A
T
Aχ=0,必有( )
选项
A、(Ⅰ)的解是(Ⅱ)的解,(Ⅱ)的解也是(Ⅰ)的解
B、(Ⅰ)的解是(Ⅱ)的解,但(Ⅱ)的解不是(Ⅰ)的解
C、(Ⅱ)的解是(Ⅰ)的解,但(Ⅰ)的解不是(Ⅱ)的解
D、(Ⅰ)的解不是(Ⅱ)的解,(Ⅱ)的解也不是(Ⅰ)的解
答案
A
解析
设α是Aχ=0的解,即Aα=0,则A
T
Aα=0,即(Ⅰ)的解是(Ⅱ)的解.
设β是A
T
Aχ=0的解,则A
T
AB=0.
两边左乘β
T
得到β
T
A
T
Aβ=β
T
0=0,
整理可得(Aβ)
T
Aβ=0,从而得到Aβ=0,即(Ⅱ)的解是(Ⅰ)的解.
转载请注明原文地址:https://jikaoti.com/ti/oBtRFFFM
0
考研数学二
相关试题推荐
某试验性生产线每年1月份进行熟练工与非熟练工的人数统计,然后将熟练工支援其他生产部门,其缺额由招收新的非熟练工补齐。新、老非熟练工经过培训及实践至年终考核有成为熟练工。设第n年1月份统计的熟练工与非熟练工所占百分比分别为xn和yn,记成向量。是A的两个线性
计算下列不定积分:
当x>0时,证明:
设三阶矩阵A的特征值λ1=1,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。求Anβ。
设矩阵矩阵B=(kE+A)2,求对角阵A,使得B和A相似,并问k为何值时,B为正定阵.
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1,则正确的是(Ⅱ)f(x)在x=0邻域二阶可导,f’(0)=0,且(-1)f"(x)-xf’(x)=ex-1,则下列说法正确的是(A)f(0)
求下列极限:
(1998年试题,八)设y=f(x)是区间[0,1]上的任一非负连续函数.(1)试证存在xo∈(0,1),使得在区间[0,x]上以f(xo)为高的矩形面积,等于在区间[xo,1]上以y=f(x)为曲边的曲边梯形面积.(2)又设f(x)在区间(0,1)内可导
随机试题
A.先深后浅,重插轻提B.先浅后深,重插轻提C.先浅后深,轻插重提D.先深后浅,轻插重提提插补泻法中的补法操作是
下列哪项考虑减少131I治疗剂量
A.浓缩红细胞B.冷沉淀C.白蛋白液D.免疫球蛋白E.血小板用于治疗严重再生障碍性贫血的是
A.糖原B.锌C.酸性磷酸酶D.果糖E.葡萄糖精液中精子能量的主要来源是
麝香的功效是
甲公司通过证券集中竞价交易陆续持有乙股份有限公司的股票于2000年8月5日达到乙公司所发行股份的百分之五。之后,甲公司于2000年9月9日将其中的部分股票卖出,获利200万元。对此,下列说法中,不正确的有()。
在锅炉安全附件的安装中,正确的做法为()。
内存的存储容量为32MB的含义是()。
下列应该计入进口货物完税价格的费用有()。
“未秋先秋,踏断蛮牛”“生地茄子熟地瓜,生地菜子熟地花”“庄稼施肥有技巧,看天看地又看苗”“天灾不由人,抗灾不由大”。这些农谚告诉我们的哲学道理是()。
最新回复
(
0
)