首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
已知非齐次线性方程组 有3个线性无关的解. 证明方程组系数矩阵A的秩r(A)=2;
admin
2018-08-03
38
问题
已知非齐次线性方程组
有3个线性无关的解.
证明方程组系数矩阵A的秩r(A)=2;
选项
答案
设ξ
1
,ξ
2
,ξ
3
是该方程组的3个线性无关的解,则由解的性质知α
1
=ξ
1
—ξ
2
,α
2
=ξ
1
—ξ
3
是对应齐次线性方程组Ax=0的两个解,且由 [α
1
α
2
]=[ξ
1
ξ
2
ξ
3
][*] 及ξ
1
,ξ
2
,ξ
3
线性无关,知向量组α
1
,α
2
线性无关,故齐次线性方程组Ax=0的基础解系至少含2个向量,即4一r(A)≥2,得r(A)≤2,又显然有r(A)≥2(A中存在2阶非零子式一1,或由A的前2行线性无关),于是有r(A)=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/vw2RFFFM
0
考研数学一
相关试题推荐
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2z,则B=___________.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
设二维随机变量(X1,Y1)与(X2,Y2)的联合概率密度分别为求:(Ⅰ)常数K1,K2的值;(Ⅱ)Xi,Yi(i=1,2)的边缘概率密度;(Ⅲ)P{Xi>2Yi}(i=1,2).
设P(x,y,z),Q(x,y,z),R(x,y,z)在区域Ω连续,Г:x=x(t),y=y(t),z=z(t)是Ω中一条光滑曲线,起点A,终点B分别对应参数tA与tB,又设在Ω上存在函数u(x,y,z),使得du=Pdx+Qdy+Rdz(称为Pdx
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:ξ∈(0,1)使得
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个规范正交基.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
计算行列式Dn=之值.
随机试题
4G的制式包括()。
小说按篇幅长短可分为________、________和短篇小说三大类。
空气传播隔离的预防原则是什么?
患者,男,38岁。进食时左颌下腺肿大1年,检查见左颌下腺稍肿大,无压痛。颌下腺炎性病变造影应投照片位
据《关于推进大气污染物联防联控工作改善区域空气质量的指导意见》,大气污染物联防联控的重点行业是()。
为了保证不同期间财务报表具有可比性,如果会计估计变更的影响数以前包括在特殊项目中,则以后也应作为特殊项目反映。()
关于有限责任公司的股权转让,下列说法不正确的包括()。
马来西亚是亚洲新兴工业国之一,是世界上最大的()生产国。
学生“品德差、学习差,几乎没有合作行为,而且谁也不知道该做什么”,这是学生对()领导方式的典型反应。
We【C1】______upacamerafortheveryfirsttime.Wesnapsomepictures.【C2】______them,andletfamilymembersoohandaahov
最新回复
(
0
)