首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
27
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/vmwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
[*]
证明f(x)=x-[x]在(-∞,+∞)上是有界周期函数.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
A是n阶矩阵,且A3=0,则().
设α,β为3维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:秩r(A)≤2;
用集合的描述法表示下列集合:(1)大于5的所有实数集合.(2)方程x2-7x+12=0的根的集合.(3)圆x2+y2=25内部(不包含圆周)一切点的集合.(4)抛物线y=x2与直线x-y=0交点的集合.
求不定积分
飞机以匀速v沿y轴正向飞行,当飞机行到原点时被发现,随即从x轴上点(x0,y0)处发射导弹向飞机击去,其中x0>0.若导弹的速度方向始终指向飞机,其速度大小为常数2v.(Ⅰ)求导弹运行轨迹满足的微分方程及初始条件;(Ⅱ)求导弹的运行轨迹
随机试题
下列对事业单位属性表述正确的是()。
女性,25岁,骑自行车不慎摔倒跌伤左大腿,大腿中段可见皮肤破损,创面少量渗血,受伤部位剧痛,急救人员到达时,病人平卧于地面,面色苍白,呼吸困难。急诊室经清创缝合,发现创口污染较轻,理想的治疗方法是()
健康教育中知信行三者之间的关系是
石膏胶凝材料品种主要有()。
对于由业主负责采购的材料和设备物资,监理工程师应负责制订计划,监督合同的执行,具体内容包括()。
每种职业都有其特有的职业活动和职业关系,都承担着特定的职业义务和责任。这说明了职业道德的哪一种特征?()
建立个人信用信息基础数据库既要实现商业银行之间的信息共享,方便群众借贷,防范信贷风险,又要()
【2012下】婴儿喜欢将东西扔在地上,成人拾起来给他后,他又扔在地上,如此重复,乐此不疲。这一现象说明婴儿喜欢()。
某高中今年人校新生的人数为1000人,而三年前的新生人数为1500人,呈逐年下降的趋势,但是该高中新生数量占全市高中新生数量的比例并没有降低。以下哪项为真,最能解释上述现象?
证明:方程xa=lnx(a<0)在(0,+∞)上有且仅有一个实根.
最新回复
(
0
)