首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
admin
2016-10-26
29
问题
设A=(a
ij
)是m×n矩阵,β=(b
1
,b
2
,…,b
n
)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b
1
x
1
+b
2
x
2
+…+b
n
x
n
=0的解,证明β可用A的行向量α
1
,α
2
,…,α
m
线性表出.
选项
答案
构造一个联立方程组 [*] 简记为Cx=0,显然,(Ⅲ)的解必是(Ⅰ)的解,又因(Ⅰ)的解全是(Ⅱ)的解,于是(Ⅰ)的解也必全是(Ⅲ)的解,所以(Ⅰ),(Ⅲ)是同解方程组,它们有相同的解空间.从而n一r(A)=n一r(C),即r(A)=r(C),亦即r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β). 因此极大线性无关组所含向量个数相等,这样α
1
,α
2
,…,α
m
的极大线性无关组也必是α
1
,…,α
m
,β的极大线性无关组,从而β可由α
1
,α
2
,…,α
m
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/vmwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
24/91
证明下列函数是有界函数:
在半径为r的球内嵌入一圆柱,试将圆柱的体积表示为其高的函数,并确定此函数的定义域。
设曲线方程为y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ε(ε>0)所谓平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ε),求满足的a;(2)在此曲线上找一点,使过该点的切线与两坐标轴所夹平面图形的面积最大,并求出该面积。
已知y=x2+a与y=b㏑(1+2x)在x=1点相切(两曲线在(x。,y。)处相切是指它们在(x。,y。)处有共同切线),求a,b的值.
计算二重积分=_________.
设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)丨x2+y2+z2≤t2},D(t)={(z,y)丨x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
设Г:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t),(α,β)有连续的导数且xˊ2(t)+yˊ2(t)≠0,f(x,y)在D内有连续的偏导数,若Po∈Γ是f(x,y)在Γ上的极值点,求证:f(x,y)在点Po沿Γ的切线
设f(x)在[0,1]连续且非负但不恒等于零,记I1=,I2=,I3=,则它们的大小关系为
随机试题
常温下,皮肤的物理散热速度主要决定于
A.1分B.2分C.4分D.8分SLEDAI评分中发热为
尿毒症患者,下列哪种症状与继发性甲旁亢无关
在分配稀有卫生资源时,不应该坚持的是
选派项目经理阶段的预算成本计划是()。
根据《会计法》的规定,主管全国会计工作的部门是()。
企业市场营销活动具有的功能()。
中国十大风景名胜区中唯一的山岳风景区是______风景名胜区。
算法的空间复杂度是指()。
Starvationprobablydoesn’tsoundlikeakeytolivingwellintooldage.Butasstrangeasitseems,calorierestriction,done
最新回复
(
0
)