设A是三阶实对称矩阵,且A2+2A=O,r(A)=2. (1)求A的全部特征值; (2)当k为何值时,A+kE为正定矩阵?

admin2020-03-10  39

问题 设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.
    (1)求A的全部特征值;
    (2)当k为何值时,A+kE为正定矩阵?

选项

答案(1)由A2+2A=O得r(A)+r(A+2E)=3,从而A的特征值为0或一2,因为A是实对称矩阵且r(A)=2,所以λ1=0,λ23=一2. (2)A+kE的特征值为k,k一2,k一2,当k>2时,A+kE为正定矩阵.

解析
转载请注明原文地址:https://jikaoti.com/ti/vliRFFFM
0

最新回复(0)