请以“直线与平面平行的判定”为课题,完成下列教学设计。 (1)教学目标 (2)本节课的教学重、难点 (3)写出新课引入和新知探究、巩固、应用等及设计意图

admin2015-08-13  28

问题 请以“直线与平面平行的判定”为课题,完成下列教学设计。
    (1)教学目标
    (2)本节课的教学重、难点
    (3)写出新课引入和新知探究、巩固、应用等及设计意图

选项

答案(1)教学目标 通过直观感知——观察——操作确认的认识方法理解并掌握直线与平面平行的判定定理,掌握直线与平面平行的画法并能准确使用数学符号语言、文字语言表述判定定理。培养学生观察、探究、发现的能力和空间想象能力、逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣。增强自信心,树立积极的学习态度,提高学习的自我效能感。 (2)教学重点与难点 重点是判定定理的引入与理解,难点是判定定理的应用及立体空间感、空间观念的形成与逻辑思维能力的培养。 (3)教学过程设计 ①知识准备、新课引入 提问1:根据公共点的情况,空间中直线a和平面有哪几种位置关系?并完成下表:(多媒体幻灯片演示) [*] 我们把直线与平面相交或平行的位置关系统称为直线在平面外,用符号表示为A。 提问2:根据直线与平面平行的定义(没有公共点)来判定直线与平面平行,你认为方便吗?谈谈你的看法,并指出是否有别的判定途径。 (设计意图:通过提问,学生复习并归纳空间直线与平面位置关系而引入本节课题,并为探寻直线与平面平行判定定理做好准备。) ②判定定理的探求过程 1)直观感知 提问:根据同学们日常生活的观察,你们能感知到并举出直线与平面平行的具体事例吗? 生1:日光灯与天花板,树立的电线杆与墙面。 生2:门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行(由学生到教室门前作演示),然后教师用多媒体动画演示。 2)动手实践 教师取出预先准备好的直角梯形泡沫板演示:当把互相平行的一边放在讲台桌面上并转动,观察另一边与桌面的位置,给人以平行的感觉,而当把直角所在的腰放在桌面上并转动,观察另一边与桌面,给人的印象就不平行。又如老师直立讲台,则大家会感觉到老师与四周墙面平行,如老师向前或后倾斜则感觉老师与左、右墙面平行,如老师向左、右倾斜,则感觉老师与前、后墙面平行(老师也可用事先准备的木条放在讲台桌上作上述情形的演示)。 (设计意图:设置这样动手实践的情境,是为了让学生更清楚地看到线面平行与否的关键因素是什么。使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。) 3)探究思考 上述演示的直线与平面位置关系为何有如此的不同?关键是什么因素起了作用呢?通过观察感知发现直线与平面平行,关键是三个要素:第一,平面外一条线;第二,平面内一条直线;第三,这两条直线平行。如果平面外的直线a与平面内的一条直线b平行,那么直线a与平面平行吗? 4)归纳确认:(多媒体幻灯片演示) 直线和平面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线和这个平面平行。 简单概括:(内外)线线平行线面平行 作用:判定或证明线面平行。 关键:在平面内找(或作)出一条直线与面外的直线平行。 思想:空间问题转化为平面问题 ③定理运用,问题探究(多媒体幻灯片演示) 判断下列命题的真假?说明理由: 1)如果一条直线不在平面内,则这条直线就与平面平行。( ) 2)过直线外一点可以作无数个平面与这条直线平行。( ) 3)一直线上有二个点到平面的距离相等,则这条直线与平面平行。( ) 设a、b是二异面直线,则过a、b外一点p且与a、b都平行的平面存在吗?若存在请画出平面,不存在说明理由? 先由学生讨论交流,教师提问,然后教师总结,并用准备好的羊毛针、铁线、泡沫板等演示平面的形成过程,最后借多媒体展示作图的动画过程。 (设计意图:这是一道动手操作的问题,不仅是为了加深对定理的认识,更重要的是培养学生空间感与思维的严谨性。) ④总结 先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示): 1)线面平行的判定定理:平面外的一条直线与平面内的一条直线平行,则该直线与这个平面平行。 2)定理的符号表示: 简述:(内外)线线平行则线面平行。 3)定理运用的关键是找(作)面内的线与面外的线平行,途径有:取中点利用平行四边形或三角形中位线性质等。

解析
转载请注明原文地址:https://jikaoti.com/ti/vHz9FFFM
0

相关试题推荐
最新回复(0)