首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,+∞)上连续,且f(x)存在.证明:f(x)在[a,+∞)上有界.
设f(x)在[a,+∞)上连续,且f(x)存在.证明:f(x)在[a,+∞)上有界.
admin
2018-05-22
20
问题
设f(x)在[a,+∞)上连续,且
f(x)存在.证明:f(x)在[a,+∞)上有界.
选项
答案
设[*]f(x)=A,取ε
0
=1,根据极限的定义,存在X
0
>0,当x>X
0
时, |f(x)-A|<1, 从而有|f(x)|<|A|+1. 又因为f(x)在[a,X
0
]上连续,根据闭区间上连续函数有界的性质, 存在k>0,当x∈[a,X
0
],有|f(x)|≤k. 取M=max{|A|+1,k},对一切的x∈[a,+∞),有|f(x)|<M.
解析
转载请注明原文地址:https://jikaoti.com/ti/v3dRFFFM
0
考研数学二
相关试题推荐
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
曲线的渐近线方程为_______.
设向量组α1=(1,1,1,3)T,α2=(-1,一3,5,1)T,α3=(3,2,-1,p+2)T,α4=(-2,-6,10,p)T,(1)户为何值时,该向量组线陛无关?并在此时将向量α=(4,1,6,10)T用α1,α2,α3,α4线性表出;
设j,y=-y(x)是二阶常系数微分方程,yn+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x=0时,函数的极限
设有3维列向量问λ取何值时:(1)β可由α1,α2,α3线性表示,且表达式唯一;(2)β可由α1,α2,α3线性表示,且表达式不唯一;(3)β不能由α1,α2,α3线性表示.
设A是任一n(n≥3)阶方阵,A*是A的伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*等于
已知A=(α1,α2,α3,α4)是4阶矩阵,其中α1,α2,α3,α4是4维列向量.若齐次方程组Ax=0的通解是k(1,0,一3,2)T,证明α2,α3,α4是齐次方程组A*x=0的基础解系.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设A是3阶非零矩阵,满足A2=0,则线性非齐次方程组Ax=b(易≠0)的线性无关解向量的个数是_______.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
随机试题
A、CollectinformationabouttheMoonandMarsindifferentways.B、MakeaninterviewwiththeastronautswhohadlandedontheM
A.VP方案B.蒽环类药物联合阿糖胞苷C.输浓缩红细胞D.口服别嘌醇E.鞘内注射甲氨蝶呤防治尿酸性肾病
柏油样粪便产生的机制,哪一种是正确的
患者面色苍白,四肢厥冷,呼吸微弱,额汗淋漓如油。此汗称为( )。
某媒体未征得艾滋病孤儿小兰的同意,发表了一篇关于小兰的报道,将其真实姓名、照片和患病经历公之于众。报道发表后,隐去真实身份开始正常生活的小兰再次受到歧视和排斥。关于该媒体的行为,下列选项正确的是()。
下列属于离职后福利的是()。
为了发展和实现共同富裕的目标,只能采取现在这样的部分先富带后富,逐步达到共同富裕的政策。()
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi-1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
结构化布线工程中常采用4对UTP,其对应的I/O信息模块有两种标准,即T568A和T568B,它们之间的差别只是(28)。
市場で野菜を買ってきた。
最新回复
(
0
)