首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α,β均为三维单位列向量,并且αTβ=0,若A=ααT+ββT,则必有非零列向量x,使Ax=0,并且A与Λ相似,写出对角矩阵Λ.
设α,β均为三维单位列向量,并且αTβ=0,若A=ααT+ββT,则必有非零列向量x,使Ax=0,并且A与Λ相似,写出对角矩阵Λ.
admin
2020-04-30
18
问题
设α,β均为三维单位列向量,并且α
T
β=0,若A=αα
T
+ββ
T
,则必有非零列向量x,使Ax=0,并且A与Λ相似,写出对角矩阵Λ.
选项
答案
因为α,β为单位向量,且α
T
β=0,故[*]的秩为2,从而有x≠0,使 [*] 即α
T
x=0,β
T
x=0,于是有 Ax=(αα
T
+ββ
T
)x=αα
T
x+ββ
T
x=0. 又 Aα=(αα
T
+ββ
T
)α=αα
T
α+ββ
T
α=α, Aβ=(αα
T
+ββ
T
)β=αα
T
β+ββ
T
β=β, 因此,A的特征值为1,1,0,其对应的特征向量为α,β,x,且α,β,x线性无关,故存在可逆矩阵p=(α,β,x),使 [*]
解析
本题考查抽象矩阵的特征值与特征向量的求法,特征值与特征向量的性质和矩阵相似对角化的条件.
转载请注明原文地址:https://jikaoti.com/ti/uk9RFFFM
0
考研数学一
相关试题推荐
设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关的充分必要条件为
设λ1,λ2是n阶矩阵A的特征值,α1,α2分别是A的对应于λ1,λ2的特征向量,则()
设,则A,B的关系为().
r(A)=2,则()是A*X=0的基础解系.
向量组α1=(1,0,1,2),α2=(0,1,2,1),α3=(-2,0,-2,-4),α4=(0,1,0,1),α5=(0,0,0,-1),则向量组α1,α2,α3,α4,α5的秩为________。
如果β=(1,2,t)T可以由α1=(2,1,1)T,α2=(-1,2,7)T,α3=(1,-1,-4)T线性表示,则t的值是________。
已知ξ1=(一3,2,0)T,ξ1=(一1,0,一2)T是方程组的两个解,则此方程组的通解是______.
设向量α=(1,0,一1)T,矩阵A=ααT,a为常数,n为正整数,则行列式|aE—An|=________.
设A为n阶方阵,任何n维列向量都是方程组的解向量,则R(A)=_________。
随机试题
李国庆诉上海市静安区政府、上海市政府房屋征收补偿决定及行政复议决定案上海市静安区人民政府(以下简称“静安区政府”)于2012年10月19日作出房屋征收决定,李国庆户承租的公房在征收范围内。安置补偿协商过程中,静安区住房保障和房屋管理局(以下简称“静安房管
小儿腹泻时口服补液盐(ORS液)的电解质张力是
进口保健食品,必须出示( )。
重整计划由()负责执行。
商业银行可以用来发放贷款和进行新的投资的资金是()。
对于比较容易的、感兴趣的材料,采用()复习方式比较好。
课程政策关注的核心问题是()
最优货币区
下列关于ASCII编码的叙述中,正确的是()。
Forshopaholics,thepost-【T1】______periodmeansonlyonething:sales.Acrossthecountry,pricesareslashonclothing,【T2】__
最新回复
(
0
)