首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
设α1,α2…,αr和β1,β2,…,βs是两个线性无关的n维向量.证明:向量组{α1,α2,…,αr;β1,β2,…,βs}线性相关存在非零向量r,它既可用α1,α2,…,αr线性表示,又可用β1,β2,…,βs线性表示.
admin
2018-11-23
29
问题
设α
1
,α
2
…,α
r
和β
1
,β
2
,…,β
s
是两个线性无关的n维向量.证明:向量组{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关
存在非零向量r,它既可用α
1
,α
2
,…,α
r
线性表示,又可用β
1
,β
2
,…,β
s
线性表示.
选项
答案
“[*]”因为{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关,所以存在c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
不全为0,使得 c
1
α
1
+c
2
α
2
+…+c
r
α
r
+c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
=0 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
=-(c
r+1
β
1
+c
r+2
β
2
+…+c
r+s
β
s
), 则γ≠0(否则由α
1
,α
2
,…,α
r
和β
1
,β
2
,…,β
s
都线性无关,推出c
1
,c
2
,…,c
r
,c
r+1
,…,c
r+s
全为0),并且它既可用α
1
,α
2
,…,α
r
表示,又可用β
1
,β
2
,…,β
s
表示. “[*]”设γ≠0,它既可用α
1
,…,α
r
,表示,又可用β
1
,…,β
s
表示. 记γ=c
1
α
1
+c
2
α
2
+…+c
r
α
r
=t
1
β
1
+t
2
β
2
+…+t
s
β
s
,则c
1
,c
2
,…,c
r
,和t
1
,t
2
,…,t
s
都不全为0, 而c
1
α
1
+c
2
α
2
+…+c
r
α
r
-t
1
β
1
-t
2
β
2
-…-t
s
β
s
=0. 根据定义,{α
1
,α
2
,…,α
r
;β
1
,β
2
,…,β
s
}线性相关.
解析
转载请注明原文地址:https://jikaoti.com/ti/u51RFFFM
0
考研数学一
相关试题推荐
在电炉上安装了4个温控器,其显示温度的误差是随机的.在使用过程中,只要有两个温控器显示的温度不低于临界温度t0,电炉就断电,以E表示事件“电炉断电”,而T(1)≤T(2),≤T(3)≤T(4)为4个温控器显示的按递增顺序排列的温度值,则事件E等于(
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设a为常数,讨论方程ex=ax2的实根个数.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设二维随机变量(X,Y)的概率密度为f(x,y)=,-∞<x<+∞,-∞<y<+∞,求常数A及条件概率密度fY|X(y|x)。
已知A,B都是n阶矩阵,且P-1AP=B,若α是矩阵A属于特征值λ的特征向量,则矩阵B必有特征向量__________.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________
行列式的第4行元素的余子式之和的值为_________.
设A,B为3阶相似非零矩阵,矩阵A=(aij)满足aij=Aij(i,j=1,2,3),Aij为aij的代数余子式,矩阵B满足|E+2B|=|E+3B|=0,行列式|AB-A*+B-E|=______.
设随机事件A与B互不相容,且0<P(A)<1,0<P(B)<1,令().X与Y的相关系数为ρ,则().
随机试题
外科常用手术疗法挂线法的适应证是
项目决策阶段业主方的投资环境风险因素有( )。
关于对外借款和外商直接投资的目的,说法正确的是()。
下列关于分级基金的分类,不正确的是()。
甲公司2000年度的应缴所得税和所得税费用分别为()元。如果甲公司2000年度以前,除了1996年12月交付使用的某项固定资产,其折旧引起时间性差异外,无其他时间性差异事项,则甲公司2000年“递延税款”账户的年初账面余额为()元。
公示催告应当向()的基层人民法院申请。
导游人员在与游客闲聊时,不应谈论政治问题。()
Thefitnessmovementthatbeganinthelate1960sandearly1970scenteredaroundaerobicexercise.Millionsofindividualsbeca
采用构件式开发方式是当前应用开发工具的发展趋势,下列不属于构件式开发的优点的是()。
有一个关系:学生(学号,姓名,系别),规定学号的值域是8个数字组成的字符串,这一规则属于
最新回复
(
0
)