设y=f(χ)为区间[0,1]上的非负连续函数. (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积; (2)设f(χ)在(0,1)内可导,且f′(χ)>-,

admin2017-09-15  52

问题 设y=f(χ)为区间[0,1]上的非负连续函数.
    (1)证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(χ)为曲边的曲边梯形的面积;
    (2)设f(χ)在(0,1)内可导,且f′(χ)>-,证明(1)中的c是唯一的.

选项

答案(1)S1(c)=cf(c),S2(c)=∫c1f(t)dt-∫1cf(t)dt即证明S1(c)=S2(c)或cf(c)+∫c1f(t)dt=0. 令φ(χ)=χ∫1χf(t)dt,φ(0)=φ(1)=0,根据罗尔定理,存在c∈(0,1),使得φ′(c)=0,即cf(c)+∫1cf(t)dt=0,所以S1(c)=S2(c),命题得证. (2)令h(χ)=χf(χ)-∫χ1f(t)dt,因为h′(χ)=2f(χ)+f′(χ)>0,所以h(χ)在[0,1]上为单调函数,所以(1)中的c是唯一的.

解析
转载请注明原文地址:https://jikaoti.com/ti/tszRFFFM
0

最新回复(0)