首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
若n阶矩阵A=[α1,α2,…,αn-1,αn]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α1+α2+…+αn.证明: 方程组Ax=B必有无穷多解.
admin
2017-06-14
38
问题
若n阶矩阵A=[α
1
,α
2
,…,α
n-1
,α
n
]的前n-1个列向量线性相关,后,n-1个列向量线性无关,β=α
1
+α
2
+…+α
n
.证明:
方程组Ax=B必有无穷多解.
选项
答案
因为α
1
,α
2
,…,α
n
线性无关,所以α
1
,α
2
,…,α
n-1
线性无关,而α
1
,α
2
,…,α
n-1
线性相关,因此α
1
可由α
2
,…,α
n-1
线性表出,r(A)=n-1. 又β=α
1
+α
2
+…+α
n
可由α
1
,α
2
,…,α
n
线性表出,增广矩阵[*]因此方程组Ax=B必有无穷多解.
解析
转载请注明原文地址:https://jikaoti.com/ti/tswRFFFM
0
考研数学一
相关试题推荐
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在η∈(-1,1),使得f"(η)+f’(η)=1.
[*]
设A为3阶矩阵,将A的第2行加到第1行得B,再将B的第1列的-1倍加到第2列得C,记则().
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’’(x)<0,且f(1)=f’(1)=1,则().
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且,f+’+(a)>0,证明:存在ξ∈(a,b),使得f’’(a)<0.
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则
(I)设[*5问a,b为何值时,β1,β2能同时由α1,α2,α3线性表出.若能表出时,写出其表出式;(Ⅱ)设问a,b为何值时,矩阵方程AX=B;有解,有解时,求出其全部解.
下列无穷小中阶数最高的是().
设u=f(z),其中z是由z=y+xφ(z)确定的x,y的函数,其中f(z)与φ(z)为可微函数,证明:.
当x→0时,f(x)=x—sinax与g(x)=x2ln(1一bx)是等价无穷小,则
随机试题
下颌远中舌侧倾斜的基牙,设置环形卡环时,其卡环臂尖端应该位于基牙的A.颊侧近中倒凹区B.舌侧近中倒凹区C.颊侧远中倒凹区D.近中缺隙侧邻面E.远中邻面
杭州市总体规划最终审批部门是()。
关于静态投资回收期特点的说法,正确的有()。
会计电算化软件属于()。
不同的融资方式各有优劣,间接融资相对于直接融资的优越性主要有( )。
杰克为在华工作的外籍人士,在中国境内无住所,杰克已经在中国境内居住满5年,2014年是在中国境内居住的第6年且居住满1年,取得收入如下:(1)每月从中国境内任职企业取得工资收入25000元;从境外取得工资折合人民币15000元,每月以实报实销方式
TheweatherwasniceinTrumbullCountyonSaturdayevening.Rescuevehicleshadahardtimegettingtopeople.
Howlongdoesittakefromheretothepestofficeonfoot?
Amongthesentencesbelow,thesentence______referstoahabitualaction,conveyinganemotionalcoloring.
Childrenare【C1】______seriousillnessesbecauseoftheirparentssmokingathome,raysthegovernment’schiefmedicalofficer,
最新回复
(
0
)