首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表出式的系数全不为零,证明:α1,α2,…,αs,β中任意s个向量线性无关.
admin
2019-06-28
45
问题
已知α
1
,α
2
,…,α
s
线性无关,β可由α
1
,α
2
,…,α
s
线性表出,且表出式的系数全不为零,证明:α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
选项
答案
用反证法.设α
1
,α
2
,…,α
s
,β中存在s个向量α
1
,α
2
,…,α
i-1
,α
i+1
,…,α
s
,β线性相关,则存在不全为零的常数k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
,k使得 k
1
α
1
+…+k
i-1
α
i-1
+k
i+1
α
i+1
+…+k
s
α
s
+kβ=0. ① 另一方面,由题设 β=ι
1
α
1
+ι
2
α
2
+…+ι
i
α
i
+…+ι
s
α
s
, 其中ι
i
≠0,i=1,2,…,s.代入①式,得 (k
1
+kι
1
)α
1
+(k
2
+kι
2
)α
2
+…+(k
i-1
+kι
i-1
)α
i-1
+kι
i
α
i
+(k
i+1
+kι
i+1
)α
i+1
+…+(k
s
+kι
s
)α
s
=0, 因已知α
1
,α
2
,…,α
s
线性无关,从而有kι
i
=0,ι
i
≠0,故k=0,从而由①式得k
1
,k
2
,…,k
i-1
,k
i+1
,…,k
s
均为0,矛盾. 故α
1
,α
2
,…,α
s
,β中任意s个向量线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/tsLRFFFM
0
考研数学二
相关试题推荐
设向量组(I):b1,…,br能由向量组(Ⅱ):a1,…,as线性表示为(b1,…,br)=(a1,…,as)K,其中K为s×r矩阵,且向量组(Ⅱ)线性无关。证明向量组(Ⅱ)线性无关的充分必要条件是矩阵K的秩r(K)=r。
设f(x)有连续的导数,f(0)=0且f’(0)=b,若函数F(x)=在x=0处连续,则常数A=_______.
曲线在(0,0)处的切线方程为__________。
设数列{xn}满足:x1>0,(n=1,2,…).证明{xn}收敛,并求
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设函数f(x)=若反常积分∫1+∞f(x)dx收敛,则()
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
如图,C1和C2分别是y=1/2(1+ex)和y=ex的图形,过点(0,1)的曲线C3是一单调增函数的图形。过C2上任一点M(x,y)分别作垂直于x轴和y轴的直线lx和ly。记C1,C2与lx所围图形的面积为S1(x);C2,C3与ly所围图形的面积为S2
求极限:
随机试题
A.瘘管切开术B.挂线疗法C.肛裂切除术D.局部用药E.口服缓泻剂低位单纯性肛裂采用
以下关于乳腺癌内分泌治疗的说法哪些是错误的
最常引起肝、脾、淋巴结肿大及脑膜白血病的是
不同给药途径的药物起效时间也不同。下列给药途径中,药物显效最快的是
公司发行记名股票的,应当置备股东名册,记载()事项。
一般资料:求助者,男性,24岁,大学毕业,待业。案例介绍:求助者大学毕业两年,在父母的强压下去过一次招聘会,可到了招聘会场,没说一句话就走了。自述不擅于表达,看见别人都很会推销自己,觉得自己不如别人。因为自己没有工作经验,害怕不能胜任工作,所以一
监察委员会有权对下列哪些人员进行监察?()
Thesuccessstoryoftopinvestorsandexecutivesisastapleofbusinessbooksandmagazines.【C1】______researchsuggestswesho
关系代数是关系操纵语言的一种传统表示方式,它以集合代数为基础,它的运算对象和运算结果均为______。
Printmakingisthegenetictermforanumberofprocesses,ofwhichwoodcutandengravingaretwoprimeexamples.Printsaremade
最新回复
(
0
)