首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=的圆面,若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的. (Ⅰ
admin
2015-05-07
130
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成,过z轴上
点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径r(z)=
的圆面,若以每秒v
0
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
(Ⅰ)写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并求出水面高度z与时间t的函数关系;
(Ⅱ)求水表面上升速度最大时的水面高度;
(Ⅲ)求灌满容器所需时间.
选项
答案
(Ⅰ)由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 [*] 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1-z)
2
]. 现由[*]=v
0
及z(0)=0,求z(t) 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1-z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**) (Ⅱ)求z取何值时[*]取最大值.已求得(*)式即 [*] (若未解答题(Ⅰ),可对题(Ⅰ)告知要证的结论即(**)式两边对t求导得[*],同样求得上式) 因此,求[*]取最大值时z的取值归结为求f(z)=z
2
+(1-z)
2
在[0,1]上的最小值点.由 [*] [*]f(z)在z=1/2在[0,1]上取最小值.故z=1/2时水表面上升速度最大. (Ⅲ)归结求容器的体积,即 [*] 因此灌满容器所需时间为[*](秒). 或由于灌满容器所需时间也就是z=1时所对应的时间t,于是在(**)中令z=1得 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/tpcRFFFM
0
考研数学一
相关试题推荐
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组Ax=b的通解是().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=[-1,2,-1]T,α2=[0,-1,1]T是方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设A,B,C,D为n阶矩阵,若ABCD=E,证明:BCDA=CDAB=E.
设多项式函数,则f(x)的四阶导数f(4)(x)=________.
设线性方程组添加一个方程ax1+2x2+bx3-5x1=4=0后,成为方程组求方程组(*)的通解;
已知曲线y=y(x)经过点(1,e—1),且在点(x,y)处的切线在y轴上的截距为xy,求该曲线方程的表达式.
计算极限.
Y服从参数X的指数分布,而X是服从[1,2]上的均匀分布的随机变量.求P{Y≤X}.
已知|A|==9,则代数余子式A21+A22=
一个容器的内侧是由x2+y2=1(y≤1/2)绕y轴旋转一周而成的曲面,长度单位为m,重力加速度为g(m/s2),水的密度为p(kg/m3)求容器的容积V
随机试题
手三阳经的走向是:()
全面质量管理的含义不包括
溶血性黄疸的特征不包括
女性患者,58岁,出现腹痛、高热、寒战、黄疸症状,确诊急性细菌性胆囊炎,下列药物中,宜选择
关于卵巢,下列哪项是正确的
由一种工作转换到另一种工作而导致的失业称为:()
下列各种利率中,()可以灵敏地反映金融市场上资金的供求状况,借贷双方所承担的利率变动风险较小。
下列各项中,属于企业经营活动中产生的现金流量是()。
Solvency
EmergingEconomicPowerfulCountryAfterEconomicCrisisItisbecomingincreasinglyclear-thatthestoryoftheglobalecon
最新回复
(
0
)