设f(x)在[0,1]上有二阶导数,且f(1)=f(0)=f’(1)=f’(0)=0,证明:存在ξ∈(0,1),使f’’(ξ)=f(ξ).

admin2016-09-12  39

问题 设f(x)在[0,1]上有二阶导数,且f(1)=f(0)=f’(1)=f’(0)=0,证明:存在ξ∈(0,1),使f’’(ξ)=f(ξ).

选项

答案令φ(x)=e-x[f(x)+f’(x)], φ(0)=φ(1)=0,由罗尔定理,存在ξ∈(0,1),使得φ’(ξ)=0, 而φ’(x)=e-x[f’’(x)-f(x)]且e-x≠0,故f’’(ξ)=f(ξ).

解析
转载请注明原文地址:https://jikaoti.com/ti/tmzRFFFM
0

随机试题
最新回复(0)