首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n。
admin
2018-04-08
34
问题
设A为m阶实对称矩阵且正定,B为m×n实矩阵,B
T
为B的转置矩阵,试证:B
T
AB为正定矩阵的充分必要条件是B的秩r(B)=n。
选项
答案
必要性:设B
T
AB为正定矩阵,则由定义知,对任意的实n维列向量x≠0,有x
T
(B
T
AB)x>0,即(Bx)
T
A(Bx)>0,于是,Bx≠0,即对任意的实n维列向量x≠0,都有Bx≠0(若Bx=0,则A(Bx)=A0=0,矛盾)。因此,Bx=0只有零解,故有r(B)=n(Bx=0有唯一零解的充要条件是r(B)=mn)。 充分性:因A为m阶实对称矩阵,则A
T
=A,故(B
T
AB)
T
=B
T
A
T
B=B
T
AB,根据实对称矩阵的定义知B
T
AB也为实对称矩阵。若r(B)=n,则线性方程组Bx=0只有零解,从而对任意的实n维列向量x≠0,有Bx≠0。又A为正定矩阵,所以对于Bx≠0,有(Bx)
T
A(Bx)=x
T
(B
T
AB)x>0,故B
T
AB为正定矩阵。
解析
转载请注明原文地址:https://jikaoti.com/ti/t3VRFFFM
0
考研数学一
相关试题推荐
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
求方程的通解.
已知线性方程组a,b为何值时,方程组有解;
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
设n阶矩阵A的秩为1,试证:存在常数μ,对任意正整数k,使得Ak=μk-1A.
设A为n×m实矩阵,且秩r(A)=n,考虑以下命题:①AAT的行列式|AAT|≠0;②AAT必与n阶单位矩阵等价;③AAT必与一个对角矩阵相似;④AAT必与n阶单位矩阵合同,其中正确的命题数为
计算下列n阶行列式:
设以元线性方程组Ax=b,其中(I)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求x1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
已知3阶矩阵A与3维向量x.使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x.(1)记P=(xAxA2x),求3阶矩阵B,使A=PBP—1;(2)计算行列式|A+E|.
随机试题
将函数展成x的幂级数.
射野输出因子(OUT)是描述射野输出剂量随射野增大而增加的关系,它定义为
Χ线机接地电阻应
治疗三叉神经痛的药物封闭疗法正确的是()
有关游离皮片移植的下列描述,正确的是
A.破血通经B.凉血止血C.清肝明目D.清解暑热E.润肠通便车前子具有的功效是()
目前医学界对死亡的判断依据是()。
方案初期,某四层砌体结构房屋顶层局部平面布置图如图36-40(Z)所示,层高均为3.6m。墙体采用MU10级烧结多孔砖、M5级混合砂浆砌筑。墙厚240mm。屋面板为预制预应力空心板上浇钢筋混凝土叠合层,屋面板总厚度300mm,简支在①轴和②轴墙体上,支承长
设A是n阶正交矩阵,证明A*也是正交矩阵.
在E-R图中,用来表示实体联系的图形是()。【09年9月】
最新回复
(
0
)