首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
已知A是n阶矩阵,α1,α2……αs是n维线性无关向量组,若Aα1,Aα2……Aαs线性相关.证明:A不可逆.
admin
2015-08-17
27
问题
已知A是n阶矩阵,α
1
,α
2
……α
s
是n维线性无关向量组,若Aα
1
,Aα
2
……Aα
s
线性相关.证明:A不可逆.
选项
答案
因A
1
α
1
+A
2
α
2
+…A
s
α
s
线性相关,故存在不全为零的数k
1
,k
2
,……,k
s
,使得k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
=0,即A(k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
)=Aξ=0.其中ξ=k
1
Aα
1
+k
2
Aα
2
+…+k
s
Aα
s
成立,因已知α
1
,α
2
……α
s
线性无关,对任意不全为零的k
1
,k
2
,……,k
s
,有ξ=k
1
α
1
+k
2
α
2
+…+k
s
α
s
≠0,而Aξ=0.说明线性方程组AX=0有非零解,从而|A|=0,A是不可逆矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/hOPRFFFM
0
考研数学一
相关试题推荐
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
[*]
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
证明:当x>0时,arctanx+
求曲线y=cosx(-π/2≤x≤π/2)与x轴围成的区域绕x轴、y轴形成的几何体体积.
设a>1,n为正整数,证明:
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设A为n阶实对称可逆矩阵f(χ1,χ2,…,χN)=.(1)记X=(χ1,χ2,…,χn)T,把二次型f(χ1,χ2,…,χn)写成矩阵形式;(2)二次型g(X)=XTAX是否与f(χ1,χ2,…,χn)合同?
设A,B为三阶矩阵,且A~B,λ1=1,λ2=2为A的两个特征值,|B|=2,求.
随机试题
小儿4个月,人工喂养。平时易惊,多汗,睡眠少,近2日来咳嗽、低热,今晨突然双眼凝视,手足抽动。查体:枕后有乒乓球感。止抽后的处理是
在方案流程图中,设备的大致轮廓线应用()表示。
Afterhefinishedtheassignment,hefoundsome(addition)______exercisestodo.
巨噬细胞表达的受体不包括
2007年1月,甲、乙、丙设立一普通合伙企业。2008年2月,甲与戊结婚。2008年7月,甲因车祸去世。甲除戊外没有其他亲人,合伙协议对合伙人资格取得或丧失未作约定。下列哪一选项是正确的?(2008—卷三—26,单)
有关土的工程性质,说法正确的是()。[2010年真题]
选择市盈率和市净率较低股票的理论基础在于,这两类股票的股价有()支持。
Weakdollarorno,$46,000—thepriceforasingleyearofundergraduateinstructionamidtheredbrickofHarvardYard—is【B1】__
假定有如下的Sub过程:Subsfun(xAsSingle,YAsSingle)t=xx=t/yY=tModYEndSub在窗体上添加一个命令按钮(名为Commandl),然后编写
In1826,aFrenchmannamedNiepceneededpicturesforhisbusiness.Buthewasnotagoodartist.Soheinventedaverysimplec
最新回复
(
0
)