首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a-t)dt,证明: F(2a)-2F(a)=f2(a)-f(0)f(2a).
设函数f(x)有连续导数,F(x)=∫0xf(t)f’(2a-t)dt,证明: F(2a)-2F(a)=f2(a)-f(0)f(2a).
admin
2018-09-25
26
问题
设函数f(x)有连续导数,F(x)=∫
0
x
f(t)f’(2a-t)dt,证明:
F(2a)-2F(a)=f
2
(a)-f(0)f(2a).
选项
答案
F(2a)-2F(a)=∫
0
2a
f(t)f’(2a-t)dt-2∫
0
a
f(t)f’(2a-t)dt =∫
a
2a
f(t)f’(2a-t)dt-∫
0
a
f(t)f’(2a-t)dt, 其中∫
a
2a
f(t)f’(2a-t)dt=f
2
(a)-f(0)f(2a)+∫
a
2a
f(2a-x)f’(t)dt,所以 原式=f
2
(a)-f(0)f(2a)+∫
a
2a
f(2a-t)f’(t)dt-∫
0
a
f(t)f’(2a-t)dt, 又∫
a
2a
f(2a-t)f’(t)dt[*]∫
0
a
f(u)f’(2a-u)du=∫
0
a
f(t)f’(2a-t)dt,所以 F(2a)-2F(a)=f
2
(a)-f(0)f(2a).
解析
转载请注明原文地址:https://jikaoti.com/ti/su2RFFFM
0
考研数学一
相关试题推荐
设α1=(1,2,1)T,α2=(2,3,a)T,α3=(1,a+2,-2)T,若β1=(1,3,4)T可以由α1,α2,α3线性表出,β2=(0,1,2)T不能由α1,α2,α3线性表出,则a=__________.
求下列变限积分函数的导数,其中f(x)连续.(Ⅰ)F(x)=,求F′(x);(Ⅱ)F(x)=,求F″(x).
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C;又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=___________.
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69):(Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧;(Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
当a,b取何值时,方程组有唯一解,无解,有无穷多解?当方程组有解时,求其解.
设L为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续.(Ⅰ)L关于y轴对称(图9.40),则其中L1是L在右半平面部分.(Ⅱ)L关于x轴对称(图9.41),则其中L1是L在上半平面部分.
设f(x)在点x=a处可导,则=__________.
问满足方程一y″一2y′=0的哪一条积分曲线通过点(0,一3),在该点处有倾角为arctan6的切线且曲率为0?
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设f(x,y)在单位圆x2+y2≤1上有连续的偏导数,且在边界上取值为零,f(0,0)=2001,试求极限
随机试题
红细胞悬浮稳定性降低的主要原因是
当实际产出上升时()。
限额设计的目标包括()。
下列各项中,属于经营活动流入现金的是()。
出版于上个世纪20年代,被誉为“美国最伟大的小说”的是()。
WetendtothinkofthedecadesimmediatelyfollowingWorldWarIIasatimeofprosperityandgrowth,withsoldiersreturningh
UML叫做统一建模语言,它把Booch、Rumbaugh和Jacobson等各自独立的OOA和OOD方法中最优秀的特色组合成一个统一的方法。UML允许软件工程师使用由一组语法的语义的实用的规则支配的符号来表示分析模型。在UML中用5种不同的视图来表示一个系
WhyPeopleUsePseudonyms(假名字)?Youcan’tchoosethenameyouaregivenatbirth,butinmanycountriesyoucanchangeit
AformerGovernmentchiefscientistoncetoldmethatweshouldalwayshaveaPlanBreadyincasePlanAdoesn’twork—ordoesn’
A、Tendecades.B、Aquarterofcentury.C、Onedecade.D、One-tenthofyear.CHowlongdidittaketocuttheSuezCanal?
最新回复
(
0
)