首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
admin
2013-04-04
24
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=-2,α
1
=(1,-1,1)
T
是A的属于λ
1
的一个特征向量.记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵曰的特征向量,并求B的全部特征值的特征向量;
选项
答案
由Aα=λα知A
n
α=λ
n
α那么 Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=(λ
1
5
-4λ
1
3
+1)α
1
=-2α
1
, 所以α
1
,是矩阵B属于特征值μ
1
=-2的特征向量. 类似地,若Aα
2
=λ
2
α
2
,Aα
3
=λ
3
α
3
,有 Bα
2
=(λ
2
5
-4λ
2
3
+1)α
2
=α
2
, Bα
3
=(λ
3
5
-4λ
3
3
+1)α
3
=α
3
, 因此,矩阵B的特征值为μ
1
=-2,μ
2
=μ
3
=1. 由矩阵A是对称矩阵知矩阵B也是对称矩阵,设矩阵B属于特征值μ=1的特征向量是β=(x
1
, x
2
,x
3
)
T
,那么 α
1
T
β=x
1
-x
2
+x
3
=0. 所以矩阵B属于特征值μ=1的线性无关的特征向量是β
2
=(1,1,0)
T
,β
3
=(-1,0,1)
T
. 因而,矩阵B属于特征值μ
1
=-2的特征向量是k
1
(1,-1,1)
T
,其中k
1
是不为0的任意常数. 矩阵曰属于特征值μ=1的特征向量是k
2
(1,1,0)
T
+k
3
(-1,0,I)
T
,其中k
2
,k
3
是不全为0的任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/sScRFFFM
0
考研数学一
相关试题推荐
(2007年试题,一)设函数f(x)在x=0处连续,下列命题错误的是().
设z=f(xy),其中函数f可微,则
(2010年试题,4)设m,n是正整数,则反常积分的收敛性().
[2010年]设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βs线性表示.下列命题正确的是().
[2014年]设α1,α2,α3是3维向量,则对任意常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的().
[2010年]设函数y=f(x)由参数方程(t>一1)所确定,其中Ψ(t)具有二阶导数,且Ψ(1)=5/2,Ψ′(1)=6.已知,求函数Ψ(t).
(2011年试题,三)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T,不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,α)T线性表示.求α的值;
已知u=g(siny),其中g’(v)存在,y=f(x)由参数方程所确定,求du.
若函数y=f(x)具有二阶导数,且f’(x)>0,f"(x)<0,△x为自变量x在x0处的增量,△y与dy分别为f(x)在x0处的增量与微分,则当△x>0时,必有()。
利用变量代换u=x,v=,可将方程化成新方程().
随机试题
多年来,理论界对组织冲突的看法褒贬不一,其中,传统的观点认为()
肝硬化腹水的性质为()
形成侧支根管的原因是
患者容某,女。心中烦乱,睡眠不安,常悲伤欲哭,不能自主,舌淡苔少,脉细微数。治宜选用()
药品经营企业可以从事的采购活动是()。
根据《工程建设行业标准管理办法》规定,工程建设行业标准的批准部门应当适时对实施后的标准进行复审,复审的结论不包括()。
根据《中国证监会关于进一步推进新股发行体制改革的意见》的规定,发行人申请材料预披露的时间应为()。
下列各项税金中,在计算企业所得税时,不可以在税前扣除的是()。
Doctor:Goodmorning.______?Patient:Well,Idon’tfeelverywell.I’vegotaheadacheandI’vegotthisrashallovermyneck
A、Wind.B、Gas.C、Steampower.D、Solarpower.C
最新回复
(
0
)