首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断: (Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示; (Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
已知β可用α1,α2,…,αm线性表示,但不能用α1,α2,…,αm-1表出,试判断: (Ⅰ)αm能否用α1,α2,…,αm-1,β线性表示; (Ⅱ)αm能否用α1,α2,…,αm-1线性表示,并说明理由.
admin
2016-10-20
45
问题
已知β可用α
1
,α
2
,…,α
m
线性表示,但不能用α
1
,α
2
,…,α
m-1
表出,试判断:
(Ⅰ)α
m
能否用α
1
,α
2
,…,α
m-1
,β线性表示;
(Ⅱ)α
m
能否用α
1
,α
2
,…,α
m-1
线性表示,并说明理由.
选项
答案
α
m
不能用α
m
能否用α
1
,α
2
,…,α
m-1
线性表示,但能用α
m
能否用α
1
,α
2
,…,α
m-1
,β线性表示. 因为β可用α
m
能否用α
1
,α
2
,…,α
m
线性表示.可设 x
1
α
1
+x
2
α
2
+…+x
m
α
m
=β, (*) 则必有x
m
≠0,否则β可用α
1
,α
2
,…,α
m-1
线性表示,与已知矛盾.所以 α
m
=[*](β-x
1
α
1
-x
2
α
2
-…-x
m-1
α
m-1
),即α
m
可由α
1
,α
2
,…,α
m-1
,β线性表示. 如α
m
=l
1
α
1
+l
2
α
2
+…+l
m-1
α
m-1
,代入(*)式知β=(x
1
+l
1
x
m
)α
1
+(x
2
+l
1
x
m
)α
2
+…+(x
m-1
+l
m-1
x
m
)α
m-1
与已知矛盾.即α
m
不能用α
21
,α
2
,…,α
m-1
线性表示. r(α
1
,α
2
,…,α
m
)=r(α
1
,α
2
,…,α
m
,β); (1) 又因β不能由α
1
,α
2
,…,α
m-1
线性表示,有 r(α
1
,α
2
,…,α
m-1
)+1=r(α
1
,α
2
,…,α
m-1
,β). (2) 那么 r(α
1
,α
2
,…,α
m
)[*]r(α
1
,α
2
,…,α
m
,β) ≥r(α
1
,α
2
,…,α
m-1
,β) (整体≥局部) [*]r(α
1
,α
2
,…,α
m-1
)+1 ≥r(α
1
,α
2
,…,α
m
). (想一下何时取大于号?何时取等号?) 从而r(α
1
,α
2
,…,α
m-1
,β)=r(α
1
,α
2
,…,α
m
,β),r(α
1
,α
2
,…,α
m-1
)+1=r(α
1
,α
2
,…,α
m
),即α
m
可α
1
,α
2
,…,α
m-1
,β线性表示,而α
m
不能由α
1
,α
2
,…,α
m-1
线性表示.
解析
转载请注明原文地址:https://jikaoti.com/ti/sCxRFFFM
0
考研数学三
相关试题推荐
α1,α2是向量组(Ⅱ)的一个极大无关组,(Ⅱ)的秩为2,故(Ⅰ)的秩为2.由于(Ⅰ)线性相关,从而行列式|β1,β2,β3|=0,由此解得a=3b;又β3可由向量组(Ⅱ)线性表示,从而β3可由α1,α2线性表示,所以向量组α1,α2,β3线性相关,于是行
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t),求:(1)t为何值时,向量组α1,α2,α3线性相关;(2)t为何值时,向量组α1,α2,α3线性无关;(3)当线性相关时,将α3表为α1和α2的线性组合.
判断下列级数的绝对收敛性和条件收敛性
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
下列函数在哪些点处间断,说明这些间断点的类型,如果是可去间断点,则补充定义或重新定义函数在该点的值而使之连续:
利用极坐标将积分,化成一元函数积分式,其中f连续.
判别下列级数是否收敛,如果收敛,是条件收敛还是绝对收敛?
求下列曲线所围成的图形的面积:(1)ρ=asin3φ;(2)ρ2=a2cos2φ.
设函数y=y(x)由方程ylny-x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
随机试题
Wegotwetintherain______noneofushadbroughtalongaraincoat.
中风阴闭的病机是
男性,25岁,狂犬病疫苗注射后一天出现荨麻疹,3天后消退。第7天后,再注射该疫苗,次日双下肢无力伴小便困难。体检:视力正常,胸以下深浅感觉缺失,双下肢肌力Ⅳ级,膝踝反射亢进,双侧病理征阳性,脊柱无压痛。狂犬疫苗注射后,视力正常,胸4以下深浅感觉缺失。确
A.血pH值测定B.肌酸激酶(CK)C.血性胸腔积液D.淀粉酶(AMP)E.胆碱酯酶(CHE)有助诊断过度换气综合征的是
一种破伤风类毒素抗体能与发生二硫键完全断裂而变性的破伤风类毒素发生反应;另一种破伤风类毒类抗体不能与因同种原因变性的破伤风类毒素反应,这一结果,可能的解释是
下列费用中,()属于企业财务费用。
“十一五”期间,经济社会发展要在保持总量平衡,大力转变经济增长方式的基础上,要完成()任务。
在工程建设设计阶段,进度控制的主要任务包括( )。
与宽松的流动资产投资策略相比,紧缩的流动资产投资策略可能伴随着更高的风险。()
Schoolsshouldteachourkidsvarioussubjects,andmoreover,teachthemhowto______rightfromwrong.
最新回复
(
0
)