首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
admin
2019-11-25
31
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得
选项
答案
设f’
+
(a)>0,f’
-
(b)>0, 由f’
+
(a)>0,存在x
1
∈(a,b),使得f(x
1
)>f(a)=0; 由f’
-
(b)>0,存在x
2
∈(a,b),使得f(x
2
)<f(b)=0, 因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(x)=[*],显然h(x)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h’(ξ
1
)=h’(ξ
2
)=0, 而h’(x)=[*],所以[*], 令φ(x)=f’(x)g(x)-f(x)g’(x),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ’(ξ)=0, 而φ’(x)=f”(x)g(x)-f(x)g”(x),所以[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/rkiRFFFM
0
考研数学三
相关试题推荐
设随机变量U在[一2,2]上服从均匀分布,记随机变量求:(1)Cov(X,Y),并判定X与Y的独立性;(2)D[X(1+Y)].
设总体X~N(a,σ2),Y~N(b,σ2),且相互独立.分别从X和Y中各抽取容量为9和10的简单随机样本,记它们的方差为SX2和SY2,并记S122=(SX2+SY2)和SXY2=(8SX2+10SY2),则这四个统计量SX2,SY2,S122,SXY2
某商品一周的需求量X是随机变量,已知其概率密度为f(x)=假设各周的需求量相互独立,以Uk表示k周的总需求量,试求:(1)U2和U3的概率密度fk(x)(k=2,3);(2)接连三周中的周最大需求量的概率密度f(3)(x).
对于任意两个事件A1,A2,考虑随机变量试证明:随机变量X1和X2相互独立的充分必要条件是事件A1和A2相互独立.
设总体X~N(μ1,σ2),Y~N(μ2,σ2).从总体X,Y中独立地抽取两个容量为m,n的样本X1,X2,…,Xm和Y1,Y2,…,Yn.记样本均值分别为.若的期望为σ2.求:(1)C;(2)Z的方差DZ.
函数y=xx在区间上()
二次型f(x1,x2,x3)=XTAX在正交变换X=QY下化为10y12一4y22一4y32,Q的第1列为(1)求A.(2)求一个满足要求的正交矩阵Q.
已知二次型f(x1,x2,x3)=(1一a)x12+(1一a)x22+2x32+2(1+a)x1x2的秩为2.(1)求a.(2)求作正交变换X=QY,把f(x1,x2,x3)化为标准形.(3)求方程f(x1,x2,x3)=0的解.
设A为四阶矩阵,|A*|=8,则=__________.
设F(x)=∫xx+2πesintsintdt,则F(x)().
随机试题
晕船是由于下列哪一部位的感受器受到过度刺激所引起
十二指肠溃疡病人胃酸过多的原因是
小儿泄泻的治疗原则是
2014年1月1日,甲公司制定了一项设定受益计划,并于当日开始实施。计划内容如下:(1)向公司部分员工提供额外退休金(统筹外退休金或额外福利补贴),这些员工在退休后每年可以额外获得10万元退休金。直至去世。(2)员工获得该额外退休金基于
教师职业道德评价的监督激励功能是__________功能的必然结果。
简述17—18世纪欧美主要国家高等教育革新的主要特征。
已知集合M={x|sinx>cosx,0<x<π),N={x|sin2x>cos2X,0<x<π),则M∩N=[].
十进制数250转换成二进制整数是
The______betweenrichandpooriswiderintheSouththanintherestofthecountry.
Warfarereferstotheuseofforceonthepartoftwoormorenationsorotherorganizedgroupsforthepurposeofdecidingques
最新回复
(
0
)