首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=,f(1)=1,f’(1)=1,证明: 存在η∈(0,1),使得f"(η)+f’(η)一η=1.
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=,f(1)=1,f’(1)=1,证明: 存在η∈(0,1),使得f"(η)+f’(η)一η=1.
admin
2020-10-21
36
问题
设函数f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=
,f(1)=1,f’(1)=1,证明:
存在η∈(0,1),使得f"(η)+f’(η)一η=1.
选项
答案
取G(x)=[f(x)一x]e
x
,则G’(x)=[f"(x)+f’(x)一x一1]e
x
, 显然G(x)在[ξ,1]上连续,在(ξ,1)内可导,G(ξ)=G(1)=0,由罗尔定理,存在η∈(ξ,1) [*](0,1),使得 G’(η)=[f"(η)+f’(η)一η—1]
η
=0,即f"(η)+f’(η)一η=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/qxARFFFM
0
考研数学二
相关试题推荐
设y1,y2是一阶线性非齐次微分方程y.+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1-μy2是该方程对应的齐次方程的解,则
设A,B均为n阶矩阵,A可逆,且A~B,则下列命题中①AB~BA;②2A~B2;③AT—BT;④A一1~B一1。正确的个数为()
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,可以作为导出组Ax=0的解向量有()个。
设A为三阶实对称矩阵,且存在正交矩阵Q=,又令B=A2+2E,求矩阵B.
设f(x)在[1,+∞]上连续可导,若曲线y=f(x),直线x=l,x=t(t>1)与x轴围成的平面区域绕x轴旋转一周所得的旋转体的体积为,且f(2)=2/9,求函数y=f(x)的表达式。
设函数f(x)是连续且单调增加的奇函数,φ(x)=(2μ-x)f(x-μ)dμ,则φ(x)是().
设A是n阶矩阵,证明:r(A)=1的充分必要条件是存在n维非零列向量a,β,使得A=aβT;
(15年)设A>0,D是由曲线段y=Asinx(0≤x≤)及直线y=0,所围成的平面区域,V1,V2分别表示D绕x轴与绕y轴旋转所成旋转体的体积.若V1=V2,求A的值.
(Ⅰ)比较∫01|lnt|[ln(l+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
随机试题
A)AftertheeventsofMarch11th2011,whenanearthquakeandtsunamiledtoameltdownofthreenuclearreactorsattheFukush
案例二:王先生为某单位员工,助理理财规划师通过分析王先生的财务状况,了解到王先生每月的收入大概为6000元,虽然当前收入一般,还款能力较弱,但由于职业前景较好,预计未来收入会逐渐增加。王先生目前通过个人住房商业性贷款购买了一套住房,贷款总额为40万期限为1
下列各项中,属于企业一般不应把风险承担作为风险管理策略的情况是()。
开展科学发展观的实践活动,要努力在改进作风上取得新的成效,要坚持()。
由于中国代表团没有透彻地理解奥运会的游戏规则,因此在伦敦奥运会上,无论是对赛制赛规的批评建议,还是对裁判执法的质疑,前后几度申诉都没有取得成功。为使上述推理成立,必须补充以下哪一项作为前提?
外汇:是指以外国货币表示的、用于国际结算的多种支付凭证。它包括外国货币(销票、铸币),外币有价证券(政府公债、国库券、公司债券、股票、息票等),外币支付凭证(票据、银行存款凭证、邮政储蓄凭证等)以及其他可以在国外兑现的凭证。在中国,下列不属于外汇范
我国开始建立教师资格证书制度是在20世纪()
(2013年真题)关于法律原则与法律规则之间的区别,下列表述正确的有()。
A、 B、 C、 A询问物品放置地点的where疑问句→回答地点
A、Ordersomefoodbyphone.B、Goouttohavedinner.C、Cooksomethingbythemselves.D、Gotothesupermarketforfood.B本题考查行为。由
最新回复
(
0
)