(01年)设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t1α3,….βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.

admin2017-04-20  30

问题 (01年)设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2α2,β2=t1α2+t1α3,….βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.

选项

答案由Aβ1=A(t1α1+t2α2)=t11+t22=0+0=0,知β1为Ax=0的解,同理可知β2,β3,…,βs均为Ax=0的解.已知Ax=0的基础解系含s个向量,故Ax=0的任何s个线性无关的解都可作为Ax=0的

解析
转载请注明原文地址:https://jikaoti.com/ti/qwwRFFFM
0

最新回复(0)