首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
设方程y’+P(x)y=x2,其中P(x)=求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
admin
2021-08-02
39
问题
设方程y’+P(x)y=x
2
,其中P(x)=
求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,+∞)内都满足方程,且满足初值条件y(0)=2.
选项
答案
本题的特色在于当x的取值范围不同时,系数P(x)不同,这样所求解的方程就不一样,解的形式自然也会不一样,最后要根据解y=y(x)是连续函数,确定任意常数. 当x≤1时,方程及其初值条件为[*]解得 y=e
—∫1dx
(∫x
2
e
∫1dx
dx+C
1
)一e
—x
(x
2
e
x
dx+C
1
)=x
2
—2x+2+C
1
e
—x
. 由y(0)=2得C
1
=0,故y=x
2
一2x+2. 当x>1时,方程为y’+[*]=x
2
,解得 [*] 综上,得 [*] 又y(x)在(一∞,+∞)内连续,有y(1
—
)=y(1
+
)=y(1),即1—2+2一[*]+C,从而C=[*]. 所以 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/pKlRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且证明:存在,使得f’(ξ)+f’(η)=ξ2+η2。
微分方程y〞-4y=e2χ+χ的特解形式为().
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
设f(u,v)具有连续偏导数,且fu’(u,v)+fu’(u,v)=sin(u+v)eu+v,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导.试证:在(a,b)内至少有一点ξ,使等式=f(ξ)一ξf’(ξ)成立.
设函数f(x)在点x=a处可导,则函数|f(x)|在点x=a处不可导的允分条件是
求微分方程的通解.
曲线的渐近线有()
已知,y1=x,y2=x2,y3=ex为方程y’’+p(x)y’+q(x)y=f(x)的三个特解,则该方程的通解为()
随机试题
____,themostpopularsportinEnglandaswellasinEurope,hasitstraditionalhomeinEnglandwhereitwasdevelopedinthe
若自旋回波序列中,一成像参数为TR=20000msTE=90ms:此最可能是
患者女,20岁。因误服安眠药中毒,意识模糊不清,呼吸微弱,浅而慢,不易观察,护士应采取的测量方法是
(2012年)氯化锂电阻湿度计使用组合传感器,是为了()。
在确定工程施工开展程序时,在保证()的前提下,实行分期分批建设可以使项目迅速建成,尽早投入使用。
电力起爆系统的组成包括()。
对“法律责任”理解不正确的是()。
以下叙述中正确的是
Whattimeisitnow?
metalandleather空格前为madeof,推测应当填入表示材质的名词。录音原文中的wereproduced是题目theproductionof的同义替换。故空格处填入metalandleather。
最新回复
(
0
)